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Abstract

We present a functional programming language based on Pure Type Systems (PTSs).
We show how we can define such a language by extending the PTS framework with
algebraic data types, case expressions and definitions. To be able to experiment with
our language we present an implementation of a type checker and an interpreter for
our language.

PTSs are well suited as a basis for a functional programming language because they
are at the top of a hierarchy of increasingly stronger type systems. The concepts of
‘existential types’, ‘rank-n polymorphism’ and ‘dependent types’ arise naturally in
functional programming languages based on the systems in this hierarchy. There is
no need for ad-hoc extensions to incorporate these features.

The type system of our language is more powerful than the Hindley-Milner system.
We illustrate this fact by giving a number of meaningful programs that cannot be
typed in Haskell but are typable in our language. A ‘real world’ example of such
a program is the mapping of a specialisation of a Generic Haskell function to a
Haskell function.

Unlike the description of the Henk language by Simon Peyton Jones and Erik Mei-
jer we give a complete formal definition of the type system and the operational
semantics of our language. Another difference between Henk and our language is
that our language is defined for a large class of Pure Type Systems instead of only
for the systems of the A-cube.
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Chapter 1

Introduction

One of the great advantages of functional programming languages is that they posses
powerful type systems that prevent programmers from writing erroneous programs.
If a program contains type errors the programmer is warned by a type checking
algorithm before running the program. If a program is type error free, it is assumed
to be safe to run: ‘typed programs cannot go wrong’ [17].

So, one of the requirements for a type system is that ‘typed programs cannot go
wrong’, but preferably the implication should work the other way too, that is: ‘good
programs can be typed’. Unfortunately not all type systems adhere to this principle.
For instance, in the functional programming language Haskell [11] it is easy to write
programs that make perfect sense, but are rejected by the type checker. This has
been been our main motivation to study more liberal type systems.

PTSs for Functional Programming: Why?

The Haskell programming language is based on the Hindley-Milner type system [17].
The Hindley-Milner system is an implicitly typed system. That means that we do
not need -as with explicitly typed languages- to annotate variables in A-abstractions
with their type. A nice property of the Hindley-Milner system is that it combines
implicit typing, polymorphism and automatic type inference. Unfortunately, the
type system only allows a limited form of polymorphism. This implies that there
exist Haskell programs that make perfect sense, but nevertheless are rejected by the
type checker. An example of such a program is:

foo :: (a->a) -> Int
foo f = f (+) (f 2) (f 3)

five :: Int
five = foo id

Trying to run the above program by Hugs, a Haskell interpreter, yields a type
error. The Haskell type system tries to fix a single monomorphic type for £. Be-
cause the program requires the type of £ to be instantiated to both Int->Int and
(Int -> Int) —> (Int -> Int) it will be rejected.

Admittedly, a slightly modified version of the above program can be typed by a
recent extension[13] [16] of Hugs which allows rank-2 types. But also this extension



does not provide everything we need: there are still meaningful programs left that
cannot be typed.

A real world example of the limitations of the Haskell type system (with or without
extensions) is the mapping of polytypic functions to Haskell programs. Polytypic
functions are functions that are defined by induction on the structure of types.
Using such functions it is for instance possible to define equality, pretty-printing
and compression functions that work for all types. It is not possible to define
polytypic functions in Haskell. It is, however, possible to write a mapping from a
polytypic definition and a type to a Haskell function that is the specialisation of the
polytypic function to that type. Unfortunately, some specialisations are mapped
to Haskell functions that make perfect sense, but are rejected by the Haskell type
checker [10, p. 6]. The reason for the rejection in this case is that the mapping
requires universal quantification in the type at a place where Haskell does not allow
such quantifiers to occur.

The above examples illustrate that the type system of Haskell (with or without
extensions) is not strong enough for our current needs. In this thesis we investigate
whether Pure Type Systems can solve the above problems and whether they can be
used as a basis for a functional programming language. We have chosen to study
the class of PTSs for its generality: PTSs generalise a large set of type systems
(including the set of systems of the so called A-cube). Furthermore, PTSs provide a
single syntax for terms, types and kinds. This makes it possible to use a single data
type to represent all three levels, and to use a single set of utility functions (like
parsing, pretty-printing, substitution functions) that work on all levels. This leads
to considerable code efficiency when writing tools (like compilers or interpreters)
for languages based on PTSs.

PTSs for Functional Programming: How?

The idea to use PTSs as a basis for a functional programming language has first
been described by by Erik Meijer and Simon Peyton Jones. In [12] they present a
language called ‘Henk’. Unfortunately, they only give typing rules for the A-cube
variant of ‘Henk’. Furthermore, they only give a sketch of how to extend PTSs
to a real language. The language presented in this paper is inspired by the work
of Meijer and Jones, but we have chosen a more formal approach: we will give an
precise definition of how to extend the theory of PTSs. Another difference between
Henk and our language is that our language is defined for a large class of PTSs and
not only for the systems of the A-cube.

If we want to use the theory of PTSs as a basis for a functional programming
language we have to investigate a couple of topics.

First of all we have to extend the PTS-framework: functional programming lan-
guages provide features, such as algebraic data types, case expressions and defini-
tions, that are not in PTSs. To use PTSs as a basis for a functional programming
language we have to investigate how the PTS-framework can be extended with
algebraic data types, case expressions and definitions.

Next to that, we have to construct a type checking algorithm: using PTSs as a basis
for a functional programming language requires the ability to type check programs
written in the extended PTS language. Unfortunately the type checking problem
is not decidable for general PTSs. There exists however an interesting subclass of
PTSs for which type checking is decidable. In this thesis we investigate how the
type checking algorithm for this class of PTSs can be extended to our language.



Finally, we need to give the operational semantics of our extended PTS-language:
The operational semantics of a programming language defines in what way a pro-
gram in the language is executed: in the case of a functional programming language
the operational semantics prescribes how terms are evaluated.

Implementation

To be able to experiment with a functional programming language based on PTSs
we implement a type checker and an interpreter for our extended PTS language.

Background

We assume that the reader of this thesis understands the syntax and semantics of
the programming language Haskell. Furthermore, we assume some basic knowledge
of logic, A-calculus and type theory, in particular the concepts of reduction, substi-
tution, derivability from a set of rules and decidability are assumed to be familiar
to the reader.

An introduction to Haskell can be found in [24]. Classical reference guides for the
A-calculus and type-theory are [2] and [3].

Organisation of this thesis

In the next chapter we give a thorough introduction to type systems. We start with
the definition of the simply typed A-calculus, and via the definitions of the different
systems of the A-cube we arrive at the theory of Pure Type Systems. In chapter
three we investigate how the theory of PTSs can be extended with algebraic data
types, the case construct and definitions. Then, in chapter four we study a type
checking algorithm for PTSs and investigate how we can extend the algorithm to
deal with our extended language. In chapter five we give a implementation of a
type checker and an interpreter for our extended PTS-language. Finally, in chapter
six, we conclude and give suggestions for further research.

Acknowledgements

First of all I would like to thank my supervisors Johan Jeuring and Doaitse Swierstra
for carefully reading my thesis and their helpful comments. I would like to thank
Erik Meijer for introducing me to the idea of using Pure Type Systems in functional
programming. Thanks to Henk Barendregt, Herman Geuvers, Wil Dekkers and Jan-
Willem Klop for stimulating my enthusiasm about the A-calculus and type theory
during the MRI Masterclass in Mathematical Logic. Thanks to Daan Leijen for
giving comments on the grammar and the parser of the language. Last, but not
least, I would like to thank my roommates of room B037 for there pleasant company
and interesting discussions during the final stage of writing this thesis.






Chapter 2

Type Systems & Functional
Programming

2.1 Introduction

The theory of typed lambda calculi lies at the basis of the theory of functional
programming. Semantically, a functional programming language can be seen as an
extended version of a typed lambda calculus. In that view a functional program
comes down to a set of (typable) lambda terms and the evaluation of a program to
the reduction of the main term of the program to a normal form.

In this chapter we look at the considerations which play a réle in choosing a typed
lambda calculus (also called a type system) as a basis for a functional programming
language. We describe how the characteristics of a type system are reflected in the
programming language. We assume that the reader does not have much experience
with type systems, so in this chapter we investigate several type systems and their
characteristics. We start our journey with the simplest of all type systems, the
simply typed lambda calculus, and will end with a quite recent development in the
field: the theory of Pure Type Systems.

2.2 The Simply Typed Lambda Calculus

The simply typed lambda calculus, denoted A—, lies at the basis of all type systems.
It was developed® by Curry in 1934[6]. We present a variant of this system, studied
by Church in 1940[5]. The difference between the two systems will be explained
below.

2.2.1 The definition of \—

Definition 2.1 (Types)

Let U be a countable infinite set whose members will be called type variables. The
set II of types of A— is defined by the following grammar:

Mu=U|ITI—>1I

Lor discovered, depending on your view on mathematics




We use a, 3,7, - - . to denote arbitrary type variables, and o, 7, . . . to denote arbitrary
types. We omit outermost parentheses, and define — to be right associative.

Definition 2.2 (Terms)
The set A of terms of A— is defined by the following grammar:

A = VAV ILA|AA
where V' is a countable set of term variables. We use x, v, . . . to denote arbitrary term

variables, and M, N, ... to denote arbitrary terms. We adopt the usual conventions
for denoting lambda terms.

Definition 2.3 (Reduction)
The relation =3 on E is the smallest relation on A satisfying

(Az : AM)N —3 M[z := N]

and closed under the rules

P—3P' = VzeV,aell : Ar:a.P—glz:aP
P—=gP = VZeA : PZ—=gP'Z&ZP —3ZP

A term M is in normal form if there is no term N with M —3 N.

—g and =g are the transitive, reflexive closure and the transitive, reflexive, sym-
metric closure of —g respectively.

Definition 2.4 (Contexts)
The set C of contezts is the set of all sets of pairs of the form

Tl ITlye-ey Ty i Tn

with 7q,...,7, € II, z1,...,2, € V, and the z; different. We use I'; A to denote
arbitrary contexts.

Definition 2.5 (Typability Relation)
The typability relation - on C' x A x II is defined by the following typing rules:

(Var) x:tkx:7

(1) ez:obFM:7T
I'FXe:0M:0 =1

(SE) '-M:0—-717 I'EN:0o

'-MN:t
where we require that  does not occur in I' in the first and second rule.

IfT'F M : 0 we say that M has type o in I'. We say that M is typable if-and-only-if
there exist I and o such that I' - M : 0.

The set of typable terms is a proper subset of the set of all terms. In this subset
restrictions are made regarding which terms may be applied to other terms. Infor-
mally type variables denote unspecified sets, and the type o — 7 denotes the set of
functions from o to 7. If M : o0 — 7, then M may only be applied to terms of type
.



Example 2.1 (Typable terms)
Let o, T, p be arbitrary types. Then we have:

ekFXr:ox:0—0
ebFXr:oy:Tr:0>T >0

e t:oc—>Topy:o—>1zi0wz(yz):(c—>T17—=p) > (0—=>T) >0 =>p

These terms are known as I, K and S.

2.2.2 Type checking and related problems

The following ‘problems’ are interesting for the use of type systems in functional
programming languages. We will explain the importance of the decidability of these
problems later on.

Definition 2.6 (Type Checking, Type Inference and Type Correctness)

e The type checking problem is, for a given context I', term M and type o, to
answer the question whether I' = M : ¢ holds.

e The type inferencing problem is to find for a given context I' and term M, a
type o such that T'- M : 0.

e The type correctness problem is to decide for a given context I' and term M,
whether there exists a type such that '+ M : 0.

Solving the type inference problem for a certain system implies solving the type
correctness problem for that system.

2.2.3 Curry- vs Church Style Typing

As mentioned above, there are two different ‘flavours’ of the system A —. The
Curry and the Church style. The difference between the two systems is that in the
Church system (the one presented above) the type of a term variable in a lambda
abstraction has to be explicitly given. In Curry’s system this is not the case.

So in Church’s system one writes:
Ar:a— B —=vy:a— b,z axz(yz)
whereas in Curry’s system one writes:

Az, y, z.x2(yz)

The essential difference between the two approaches is that in the explicit case the
unique type of a term can be found easily. For example, in the explicitly typed
term above, we already know the types of the variables x,y and z so we can easily
derive the type of zz(yz) and thereby the type of the whole term.

In the implicit case types are not unique?, and the type inference process is consid-
erably harder. For the simply typed lambda calculus there exist algorithms which
solve the type inference problem even in the implicit case, but for more complicated
type systems this is not the case. And even explicit typing does not guarantee that
the type inference problem is decidable for those more complicated systems; below
we will discuss explicitly typed type systems for which the type inference problem
is nevertheless undecidable.

2we have for instance - A\z.z : @ — « and - A\z.2 : (@ = a) = (@ — )

10



2.2.4 )\— and functional programming
Functional Pseudo Code

To illustrate what kind of programs one could write in a functional programming
language based on the type system A—, we give some examples of programs which
are typable in A—, which has been extended with rules for some basic types and
functions. To be precise, we extend the set of types with the type Int, the set of
terms with the set of all integers, and finally we extend the typing rules with the
following two rules:

(+)

To distinguish between pure lambda terms and programs written in a functional
programming language, we write the latter code in this font.

+ : Int — Int — Int

Abstraction over term variables

The system A\— lies at the basis of all type systems for functional programming.
The basic characteristic of A— is that it is possible to define functions by lambda
abstraction over a term variable.

For instance:

e id : Int -> Int
id = \x : Int . x

e twice : (Int -> Int) -> Int -> Int
twice = \f:Int -> Int . \n:Int. f (f n)

Typable versus untypable terms

In a type system we would like to have the following correspondence:
term P is untypable < term P makes no sense

An example of a term that does not make sense is:
+ 3 (\x:Int . x)

This term does not make sense because addition is only defined on integers. The
reader may check that the term is indeed not typable by the typing rules given
above.

Not all type systems conform to the above condition. For example, there are type
systems for which there exist terms which make perfect sense to the programmer
but which are nevertheless not type correct. Below we will give an example of a
meaningful term which is not type correct in A—.

But, of course we want more than this condition. It is easy to define a type system
in which terms make sense if-and-only-if they are typable: just take the system
with a single, meaningless, term that is not typable. This type system is absurd, of
course, because we cannot express any programs in it.

11



So the other important characteristic of type systems concerns expressibility. In type
systems we would like to be able to express concepts that arise from the intuition of
programmers. In the system A— we are able to express the concepts of application
of a term on a term, and abstraction of a term over a term. But, next to that,
we want to be able to express more complex concepts, such as ‘polymorphism’ (see
section 2.3), dependent types (see section 2.5) or algebraic data types (see section
3.1).

Type Inference & Type Checking

Decidability of type inference and type checking problems is crucial for a type
system if we want to use it as the basis for a functional programming language.
The reasons for this are the following.

First of all, in a functional programming language we want to be able to filter out
meaningless terms at compile time and therefore we need to check whether terms
in the program are typable.

If a term is not explicitly typed the compiler uses a type inference algorithm to find
out whether the term is typable. If the term is explicitly typed the compiler uses a
type checking algorithm to check whether the term is of the given type.

The second reason is that for producing meaningful error messages the compiler
needs to be able to infer the types of the subterms of an untypable term.

Implicit vs Explicit Typing

The Church and Curry versions of A— can be thought of as representing two different
styles of typing in programming languages. Church’s system can be compared
with programming languages with ‘explicit typing’, where the programmer has to
explicitly write down the types of all variables used in the program.

In programming languages based on Curry’s approach the compiler relieves the
programmer from this task and derives the types of the variables used in the program
itself, which is called ‘implicit typing’.

At first hand it seems that implicit typing is the better choice; it is more conve-
nient for the programmer. But, as we have seen above, implicit typing makes type
inferencing harder. For some implicitly typed systems the type inference problem
is even undecidable. It will be difficult to use such a implicitly typed system as a
basis for a functional programming language.

Polymorphic Functions

Unfortunately, it is not possible to define so-called polymorphic functions in A—.
Polymorphic functions are functions that at different calls accept arguments of dif-
ferent types. The prime example of a polymorphic function is the identity function,
which takes a term of any type as argument and simply returns that term.

A candidate for the identity function in A= would be:

id : a -> a
id = \x:a . x

12



The problem is that this function contains a free type variable. For this type variable
we can substitute one single type; all occurrences of the function in a program
should have the same type substituted for a. Therefore, this function cannot accept
arguments of different types at different calls.

A classical example of a term that is intuitively correct, but which is not typable
in A= because of the above reason, is:

(id +) (id 3) (id 1)

In the next section we deal with this problem by introducing an extension of A—:
the second order polymorphic lambda calculus.

2.3 The Second Order Polymorphic Lambda Cal-
culus

The second order polymorphic lambda calculus, denoted A2, was independently de-
veloped by the logician Jean-Yves Girard[9] and by the computer scientist John
Reynolds[21]. The system A2 gives us the possibility to define polymorphic func-
tions.

2.3.1 The definition of \2

Definition 2.7 (Types)

Again, let U be the set of type variables. The set II of types of A2 is defined by the
following grammar:

Iu=U | I-1 |VUII
The new clause YUII generates the types of polymorphic functions.

Definition 2.8 (Terms)
The set A of terms of A2 is defined by the following grammar:

A == VAV ILA|AAAUAIATT

There are two new clauses. The first one AU.A, denoting polymorphic abstraction
generates terms of the form Aa.M. The intuitive interpretation of such terms is
that the term M (which may contain « at places where types may occur) is a
polymorphic function with a type parameter a.

The second new clause, ATI, denoting type application, creates terms of the form
(MT). Such terms are intuitively understood as a call to a generic function M with
an actual type parameter 7.

Definition 2.9 (Reduction)

13



The notion of reduction of A2 is the notion of reduction of A—, extended with type
reduction.

The relation —4 is the smallest relation on A satisfying

Az : AM)N —g M[z := N]
(Aa.M)T =5 Mo := 7]

and closed under the rules

P—3P = VzeV,oell : Xx:0.P—pglz:0P
P3P = VYaeU : Aa.P -3 Aa.P'
P3P = VZecA : PZ =g P'Z
P—gP = VZecA : ZP —p ZP'
P—gP = Vrell : Pr—g P'r

Note that in the reduction rule for types, the substitution concerns all type vari-
ables and especially the type variables in the A-abstraction, so we have (Aa.\z :
a.M) Int =5 Az : Int. M.

Definition 2.10 (Typability Relation)

The typability relation - on C' x A x I is defined as an extension of the rules for A—
(definition 2.5). There are two new rules for the introduction and the elimination
of the quantifier:

(VD) TF ?AZAJ\{I) (:TVcw (o ¢ FV(I))
(VE) I'EM:Vao

Lk Mr:ola:=1]

The restriction (o ¢ FV(I')) corresponds to the requirement that the type variable
which is abstracted from must be a local identifier.

Example 2.2 (Typable terms)
Let o be an arbitrary type. Then we have:

e F(Aa )z : a.r) : Va.a = «a
This is the polymorphic identity function.

e F(AaXr:ax)o:0—0
Applying the polymorphic identity function to a type yields the identity func-
tion for terms of this type.

e F(Aapy N\Nf:a—=B,9:8—=v,z:ag(fz):(a=08)—=(B—=v) 2a—y
The polymorphic ‘composition’ function.

2.3.2 Decidability of Type Inference & Type Checking

Theorem 2.1 (Type inference for A2 (Church))
The type inference problem for A2 (Church) is decidable.

Proof: By an easy induction on the structure of the lambda term.

Theorem 2.2 (Type inference for A2 (Curry))
The type inference problem for A2 (Curry) is not decidable.

Proof: See [26]

14



2.3.3 )2 and functional programming

From now on, we will use \/ for the pseudo-code of V and /\ for the pseudo-code
of A.

Polymorphic functions

As mentioned above, the type system A2 allows us to define polymorphic functions.
For example, the identity function can be defined by:

id :: \/ a . a->a
id = /\ a. \x:a . x

Notice that the function takes a type as parameter. If we want to apply the function
id to a term, we first have to instantiate the function to the type of this term. For
example id Int 3. Using A2, it is possible to define the term which was untypable
in A—:

(id (Int -> Int -> Int) +) (id Int 3) (id Int 1)

Implicit polymorphism and type inference

The kind of polymorphism that is described here is called explicit ‘polymorphism’:
whenever a polymorphic function is used the programmer explicitly has to tell the
polymorphic function to which type it should instantiate. It is also possible to define
a A2 system in the Curry style, reflecting the idea of ‘implicit polymorphism’ [22].

Unfortunately, type inference is not decidable for A2 with implicit typing. Therefore
A2 in the Curry style is not convenient as a basis for a functional programming
language.

There exist several approaches to extend A\— with some kind of polymorphism,
while keeping the property that explicit typing is not needed for a decidable type
inference problem. All of these systems have in common that some terms which
are typable in (the explicitly typed version of) A2 are not typable in the implicitly
typed type systems. So, users of languages based on those implicit systems do not
have to explicitly type their programs, but in exchange for that they have to take for
granted that there exist meaningful programs that will not pass the type checker.

A nice example of a type system where such a trade off is made is the implicitly typed
Hindley-Milner system [17]. This system is used as the basis for the programming
language Haskell. An example of a term which makes perfect sense but which is
not, typable in Hindley-Milner is

(\f . (f (+)) (£ 1) (f 2)) id

This fact is illustrated by the printout of a Hugs session in which we ask the inter-
preter to the evaluate this term:

Prelude> (\f > f (+) (f 2) (f 3)) id
ERROR: Type error in application

x** Expression :f (+) (£ 2) (£ 3)

*%%x Term : £ 3

*x*x Type :b->a->c

*** Does not match : a

*%* Because : unification would give infinite type

15



Of course this term can be typed in a functional programming language based on
A2. However, due to the explicit typing the term becomes more complicated:

(\f: \/ a.a->a.
f (Int -> Int -> Int) (+) (f Int 1) (f Int 2)) id : Int

Example 2.3 (Rank of a type)

The rank of a type is defined as follows: a type has rank n + 1 if in the tree
representation of the type the maximum of number of left branches of — in a single
path from the the root to a V quantifier is n.

For example:

foo :: (forall a. (a -> a)) -> Int
foo £ = f (+) (f 3) (f 2)

The function foo has a rank-2 type:

] ]

Unfortunately, the type system of the (rank-2 extended version of) Haskell only
supports types up to rank-2, where A2 supports types of arbitrary rank. A real
world example of a rank-3 type arises in the mapping of polytypic functions to
Haskell programs.

Polytypic functions are functions that are defined by induction on the structure of
types. Using such functions it is for instance possible to define equality, pretty-
printing and compression functions that work for all types. It is not possible to
define polytypic functions in Haskell. It is, however, possible to write a mapping
from a polytypic definition and a type to a Haskell function that is the specialisation
of the polytypic function to that type. Unfortunately, some specialisations are
mapped to functions with a rank-3 type [10, p. 6]. These functions are not typable
in Haskell.

An example of a specialisation that yields a rank-3 type is the specialisation of the
map function to the data type Sequ.

data Fork a = Fork a a

data Sequ a = Empty

| Zero (Sequ (Fork a))
| One a (Sequ (Fork a))

The data type Sequ can be expressed as the fixpoint of a (higher-order) functor.
The functor is given by SequF, the fixpoint operator is given by HFix.

data SequF s a = Empty

Zero (s (Fork a))
One a (s (Fork a))
In (h (HFix h) a)

data HFix h a

type Sequ’ HFix SequF
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If we want to have a map for Sequ’ we need a map for SequF and a map for HFix,
and then mapSequ’ = mapHFix mapSequF. The function mapHFix has a rank-3 type
signature. So a direct mapping of the Generic Haskell specialisation to Haskell is
not, possible.

We want more...

Using the A construct we can form terms which depend on other terms, using the
A construct we can form terms which depend on types. This brings the question
forward whether we can we define types which depend on other types?

A natural example of a type depending on another type is & — « that depends on
a. In fact it is tempting to define f = Aa € Il.a — «a such that fa = a — a. This
is possible in the system Lambda Omega, which we introduce in the next section.

2.4 The System Lambda Omega

The system Lambda Omega, denoted Aw, was introduced by Jean-Yves Girard[9)].
The system allows us to abstract types over types.

2.4.1 The definition of \w

A new feature of \w is that types are generated within the system itself and not in
the informal meta language. In the previous systems the set of types was generated
from a separate type grammar, whereas in A\w the set of types is defined by the
typing rules. We define a new constant % such that o : x expresses that o € II holds.
Now, the informal statement (expressed in the type grammar by I ::=IT — II| .. .):

a,feEll= (a—p)ell
corresponds to the typing rule:

'rA:« T'FB:%
'(A— B):x

In Aw we can indeed define a function f such that fa = a — «, this function will
be denoted by: f = Aa : x.a — «a. The question remains what the type of this
function is: The function f takes a type as argument and returns a type, so we
choose f : x = . We call x — x a kind. The set of kinds is defined by the following
grammar.

K:=%x|K—> K

We introduce a new constant 1 such that k : O corresponds to k € K. The set of
kinds is, just as set of types, generated by the typing rules of Aw.

Definition 2.11 (Expressions of \w)
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The set expressions E of Aw is formed by the following grammar:
E:=V|x|O|EE|\V :EE|E— E|AE.EVE: E.E

Note that instead of defining three different sets of terms, types and kinds, we only
define the set of expressions. The typing rules determine which of the expressions
are terms, types or kinds.

Actually, we have to be more precise. We say that an expression E has:

e sort kind if-and-only-if £ : (.

e sort type if-and-only-if there exist an expression K of sort kind such that
E:K.

e sort term if-and-only-if there exists an expression 7' of sort type such that
E:T.

Often, we say that an expression is a kind, type or term, instead of saying that
an expression has sort kind, type or term. This can lead to ambiguity. Because
by saying that E is a type we sometimes mean that E : %, which is stronger than
saying that E has sort type. For instance, f = Aa : x.a = « : * = % has sort type
because x — x : [, but we don’t have f : x. To prevent this kind of ambiguity, we
say that F has:

e fkind type when we mean that E : x

e sort type when mean there exists a K such that £ : K and K : O

and we try to avoid saying that E is a type.

Another source of confusion is the use of the phrase A has type B. This phrase does
not imply that B has kind or sort type. (For instance we often say that * has type
0O.) The only thing that we express by saying that A has type B (in context T') is
that ' A: B

The question remains what we mean by types depending on types. Do we mean
that expressions of kind type can depend on expressions of kind type, or do we
mean that expressions of sort type can depend on expressions of sort type? The
latter is the case. This can be explained by looking at the abstraction rule for types
over types, which is described on the next page. To abstract b : B over z : A we
need that (A — B) has type 0. So we need the third type formation rule, which
demands that A, B : 0. This means that  : A: O and b: B : O, so x and b are
both of sort type.

Definition 2.12 (Reduction)
The reduction relation —g for Aw is the same as the reduction relation for A2.

Definition 2.13 (Contexts)
The set C of contexts is the set of all lists of the form

[1’1 ZAl,...,Z’n . An]
with Ay,..., A, € E and z,,...,z, € V. We use [] to denote the empty list, and

it X =1[r: A, . .,z,:AJand Y =[y1 : By,...,yn : By, then X,z : A = [z, :
Ay, ooz Apye s Aland X HY = {21 A, ooy xp t Apyyn 2 Bry oo, yn Byl
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Contexts of Aw are lists instead of sets. The reason is that in Aw the order in which
assumptions are made is important. The (start) rule dictates that before we can
assume x : «, we have make an assumption about a. The abstraction rules dictates
that the assumptions should be discharged in the reverse order as in which they are
made. Changing the order of the assumptions along the way yields strange results:
For instance using the (start) and (axiom) rule we can derive « : %,z : a F x : a.
Changing the order would lead to = : a,a : *x F = : a. Then we could derive
z:alb (Aa:xz): (Va: xa) and thus z : a - (Aa : x.z) Int : Int. Using the fact
that Aw has the subject reduction property (that isT'F A : 7 and A —3 A’ implies
' A':7) we would arrive at x : @ b 2 : Int which is clearly wrong.

Definition 2.14 (Typability Relation)
The typability relation - on C' x E x E is defined by the typing rules in figure 2.4.1.
In the rules s ranges over x, 1.

First of all, the axiom rule states that the constant = has type 0. This defines x
to be a kind, all other kinds are generated by the kind formation rule. The start
rule states that if the type A is well formed, then we can derive x : A from any
context which ends with z : A. The weakening rule says that we can throw away
the irrelevant binding = : C as long as the expression C' is well formed. The next
two rules describe how types can be formed. The first allows us to define function
types. The second rule can be used to define polymorphic types. The kind formation
rule describes how kinds can be formed. The three application rules describe how
expressions can be applied to other expressions. The abstraction rules tell us which
abstractions may be formed. The final rule is the conversion rule. It tells us that
if we can deduce that a has type A, and we can deduce that A is -equal to the
well-formed expression B, that we may deduce that a has type B. This rule is
necessary because in A\w reduction is possible on the level of types, so types, like
terms, do not have to be in normal form. For instance, suppose that f = Aa : *x.ac and
id = Aa : *.\x : .z, then we have F id (f Int) : (f Int) — (f Int). The conversion
rule allows us to make the necessary reduction to deduce F id (f Int) : Int — Int.

Example 2.4 (Typable terms)

e F(Aa:ixa—a):x—x*
An identity function for types of kind .

e F(Aa:ix— *a): (k= %) = *—=*
An identity function for types of kind x — %

e define compose = A : x = *.0 : x = .y : x.a (8 7), then:

— F compose: (x = %) = (k = %) = * =
— List : ¥ = %, Maybe : ¥ — % - compose List Maybe Int : x

2.4.2 Decidability of Type Inference

Theorem 2.3 (Type inference for \w (Church))
The type inference and type checking problems for Aw (Church) are decidable.

Proof: Direct consequence of theorem 2.7.

Theorem 2.4 (Type inference for \w (Curry))
The type inference problem for Aw (Curry) is not decidable.

Proof: Direct consequence of theorem 2.2.
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(axiom)

[F*:0
T'HFA:s
(start) z: Atz A
(wealk) T'FA:B T'HC:s

z:CHA:B

I'FA:x TFB:x%x

(type formation 1) TF(A=B):*

FrFA:O0Dz:AFB:x

(type formation 2) TF (Vo: AB)

'rA:O0 I'+-B:0O

(kind formation) TF(A—DB): 0

TFF:(A—>B) Tha:A TFA: %

(application of terms on terms) Tk Fa:B

IFF:(A>B) Tha:A THA:O

(application of types on types) TF Fa:B

'F:Vzx:AB) T'kFa:A
'k Fa: B[z := a

(application of terms on types)

Fz:AFb:B I'H(A— B):*
'k (Az: Ab): (A— B)

(abstraction of terms over terms)

Fz:AFb:B T'F(A— B):O
I'F(Az:Ab): (A— B)

(abstraction of types over types)

Fez:AFb:B ' (Vz: AB):x
'k (Az: Ab): (Vz: AB)

(abstraction of types over terms)

'ra:ATFB:s A=3B

(conversion rule) TFa B

Figure 2.1: Typing rules of Aw
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2.4.3 J\w and functional programming

Aw enables us to define types which depend on other types. For example:

id_type : * —-> *
id_type : \a:*. a -> a

id : \/a:* . id_type a
id = /\a:x . \x : a . x

In the next chapter, we explain how to define so called algebraic data types in type
systems. It turns out that we need types depending on types to be able to describe
these data types.

2.5 The Calculus of Constructions

Aw enables us to define terms that depend on terms, terms that depend on types
and types that depend on types. The only thing missing is types that depend on
terms.

The standard example of a useful type that depends on a term is the type of
generalised zip. The Haskell prelude provides the functions zip, zip2, ..., zip4.
When a programmer needs a function that zips, say 27 lists together (s)he has to
write his/her own zip27 function. Of course, this is ugly. It would be nice if we
could abstract over the number of lists that need to be zipped. Then we need a
function that takes an integer as an argument and yields the corresponding zip
function, such that:

gen_zip 2 : \/al,a2 . [al] -> [a2] -> [(al,a2)]
gen_zip 3 : \/al,a2,a3 . [al] -> [a2] -> [a3] -> [(al,a2,a3)]
gen_zip 27 : \/al,...,a27 . [al] ->...-> [a27] -> [(al,...,a27)]

So, the type of gen_zip depends on a term (here an integer). The Calculus of Con-
structions introduced by Coquand and Huet[23], denoted AC, gives us the flexibility
to define such types.

2.5.1 Reflection on abstraction

We have seen three different dependencies above:

e terms depending on terms.
In A= we can define terms depending on terms. Given a term M, we may
form the term Az : o.M which expects a term as argument. In other words
Az : o.M is a term that depends on a term. An example of a term depending
on a term is: (A\z :0.z) : 0 — 0.

e terms depending on types.
In A2 we can define terms depending on types. Given a term M, we may form
the term Aa.M which expects a type as argument. In other words Aa.M is
a term that depends on a type. An example of term depending on a type is:
(Ao Az s ax) :Va.a = «a
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e types depending on types.
In Aw we can define types depending on types. Given a type o, we may form
the type A« : k.0 which expects a type of kind « as argument. In other words
Ao : k.o is a type that depends on a type. An example of type depending on
a type is: (A :*.a = @) 1 % — *.

The typing rules for A\w above provide different abstraction and application rules
for each of the three dependencies above. The system AC allows one extra depen-
dency: types depending on terms. Although AC can be defined by a set of extra
abstraction and application rules for types depending on terms, we choose to give
a more concise set of rules, in which there are only two rules which provide all the
forms of abstraction and application. In that way we can easily generalise AC to
the so called A-cube, of which all the systems discussed above are components.

We introduce a new syntax, the dependent product II:

Iz : A.B

means the type of functions from values of type A to values of type B, in which the
type B may depend on the value of the argument x.

We can use the dependent product to describe all four of the above dependencies.

First, lets look at the type of a term M that depends on a term. Lets assume that
M applied to a term of type A, yields a term of type B. (in A— we we would
say M : A — B). Then M is nothing else than a function from values of type A
to values of type B, in which the type B does not depend on the argument! So,
we can say M : Iz : A.B, where x does not occur free in B. Or we can can say
M : 1I_ : A.B, where _ denotes an anonymous variable. In both cases we have
A, B : *.

The same applies for types depending on types. For example, say f : x — *. Then
f is nothing else than a function from values of type x to values of type x. So,

we can say f : I : x*. In general we can type types that depend on types with
Iz : A.B with A, B : 0.

So we will use the following convention:
A — B is an abbreviation for II_: A.B

Now, lets look at the type of a term depending on a type. For example, M : Va : . B,
with B : x. Then M is a function from values of type x to values of type B, in this
case B may depend on a. So M : I« : x.B, In general we can type terms depending
on types with Iz : A.B with A: O and B : *.

We define:
Vo : A.B is an abbreviation for IIa : A.B

Finally, lets look at the type of types depending on terms. These are functions
from terms to types in which the result type may depend on the value of the term
argument. Such functions have type Ilz : A.B where A : x and B : .

For all these types we have one single type formation rule:
'FA:s I'z: AFB:t
' (Mz:AB):t

Depending on the choice for s and ¢ we can type terms depending on terms, terms
depending on types, types depending on types and types depending on terms. We
have the following correspondence:

(PT)

(s,1) € {x 0O} x {x, 0}
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(%,%) | terms depending on terms
(O,%) | terms depending on types
(0,0) | types depending on types
(%,0) | types depending on terms

All four abstractions are dealt with in one rule:
Fe:AFb:B T'F Iz : AB): t
L (Az:Ab): (Ilz: A.B)

There is also one single application rule:
F'f:(Iz:AB) Tka: A

't fa: Bz :=d]
Applying the abbreviations given above, the reader can check that these rules cor-
respond to the rules of A\w for the first three dependencies.

(LAM) t € {x,0}

(APP)

2.5.2 The definition of \C

Now, we present the formal definition of the type system AC.

Definition 2.15 (Expressions)

The set expressions E of AC is formed by the following grammar:
E:=V|x|O|EE|\V :EE|IV:EE

Definition 2.16 (Reduction)

The relation —4 is the smallest relation on E satisfying
Az : AAM)N —g M[z := N]

and closed under the rules

P3P = VYzeV,AeE : Mx:AP—glx:AP
P—gP = VeeV,AecE : Iz:AP —gllz: AP
P3P = VYZIEE . PZ -4 P'Z
P—=3P = VZcE : ZP =g ZP'

Definition 2.17 (Contexts)

The set C' of contexts of AC is defined in the same way as the set of contexts of Aw.

Definition 2.18 (Typability Relation)
The typability relation - on C' x E x E is defined by the following typing rules:
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(axiom)

[F*:0
F'FA:s
(start) Fe:AkFz: A
(wealk) ''FA:BTFC:s
wea Ne:CHA:B
''FA:s TJx: AFB:t
(PD) Lk (Ilz: AB) :t (5,8) € i B} x {00}
Fz:AFb:B 'z : AB):t
(LAM) TF O : Ab): (z : A.B) te {0}
Ff:(lz:AB) Tha:A
(APP) 't fa: Bz :=d]
(CONV) F'ra:ATHFB:S A=3B

I'Fa:B

Example 2.5 (Typable terms)

It is hard to give examples of terms with dependent types that are meaningful
in a functional programming context without using algebraic data types and case
expressions (which will be introduced in the next chapter). Therefore we will give
some examples of typable terms that have no direct connection with functional
programming, but nevertheless illustrate the use of typing rules.

e a:xFa—x:0
Types may depend on terms!

e F(A\z:aa):a—x
A simple term with a type that depends on a term.

e d:Int > xFd3:x
Applying a ‘dependent type’ to a term yields a type.

2.5.3 Decidability of Type Inference & Type Checking

Theorem 2.5 (Type inference for A\C (Church))
The type inference and type checking problems for AC (Church) are decidable.

Proof: Direct consequence of theorem 2.7.

Theorem 2.6 (Type inference for A\C (Curry))
The type inference problem for AC (Curry) is not decidable.

Proof: Direct consequence of theorem 2.2.
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2.5.4 \C and functional programming

AC allows us to define types that depend on terms. In the introduction of this
section we have given an example that shows how these so-called ‘dependent types’
can be useful. However, to be able to give meaningful terms with ‘dependent types’
we need to extend our language with algebraic data types and case expressions.
Therefore, we postpone examples of dependent types to the next chapter. Another
source of examples of the use of dependent types in functional programming is the
documentation of Cayenne[l].

2.6 The Lambda Cube

In this section we introduce Barendregt’s A-cube[3]. The A-cube can be seen as a
generalisation of eight type systems, among these are the systems A—, A2, Aw and
AC which were introduced in the previous sections.

Most parts of the definition of the A-cube have already been given in the previous
section. In our description of the type system AC we already had the A-cube in
mind. Therefore, the definition of the A-cube is just a minor modification of the
definition of the system AC.

2.6.1 The definition of the \-cube

Definition 2.19 (Expressions and contexts)

The sets of expressions and contexts of the A-cube are the same as the sets of
expressions and contexts of the system AC.

Definition 2.20 (Reduction)

The reduction relation —g for the A-cube is the same as the reduction relation for

AC .

Definition 2.21 (Typability Relation)

For any set R such that {(x,x)} C R C {x,0} x {x,0} the relation - on C' x E x E
is defined by the typing rules of A\C except for the PI rule which becomes:

''FA:s Tyx: AF B :t

(PT) P (Ilz: AB) :t

(s,t) € R

By choosing appropriate subsets of {x,0} x {x,0} for R the A-cube instantiates to
eight type systems. See figure 2.2. For instance the set of rules of the system AP is

{(x,%), (% 0)}-

2.6.2 Decidability of Type Inference

Theorem 2.7 (Type inference for the A-cube)

The type inference problems for all the systems of the A-cube (in the Church style)
are decidable.

Proof: Direct consequence of theorem 2.7.3.
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system | names and references Set of Rules (R)

A— simply typed A-calculus [5] [6] (%, %)

A2 second order A-calculus, system F [9] [21] | (x,%) (O, %)

oo | (5, 4) (@,0)

Aw lambda omega, system Fw|[9] (%) (O,% (O,0)
Nl () (5,
AP2 [15] (k%) (O,%) (%,
APw (%, %) (O,0)  (*,
AC calculus of constructions [23] (%,%)  (O,%) (O,0) (%

boogo

Figure 2.2: The systems of the A-cube

2.6.3 The A-cube and functional programming

The A-cube framework generalises a rich set of type systems, supporting polymor-
phism, functions on types, and dependent types. By simply selecting or discarding
rules one can force the framework to support or not support each of these features.
This flexibility and ability to parameterise makes the A-cube a good choice for a
basis for a functional programming language.

Furthermore, the A-cube provides a single syntax for terms, types and kinds, this
makes it possible to use a single data type in implementations to represent all three
levels, and to use a single set of utility functions (like parsing, pretty-printing,
substitution functions) that works on all levels. This leads to considerable code
efficiency when writing tools (like compilers or interpreters) for languages based on
the A-cube.

Unfortunately, despite its flexibility, there are still things that are not possible in
the A-cube framework, as we will see in the next section.

2.7 Pure Type Systems

Using the systems in the A-cube we can define a number of different identity func-
tions. Using A— we can define the monomorphic identity function on terms (of type
a) by (Az : a.z) : @ = a. Using A2 we can define the polymorphic identity function
on terms by (Aa.Az : a.x) : YVa.a — a. Using Aw we can define the monomorphic
identity function on types (of kind k) by (A« : k.t) : K — k. But this is where hier-
archy stops: it is not possible to define a ‘polymorphic identity function on types’.
That is: it is not possible to define a function which takes a kind x as argument
and yields the identity function on types of kind x. It is tempting to define such
a function by: (Ak : O.Ma : k.a) : lIk : O.k — k. Although the expression is syn-
tacticly valid, it is not possible to type it by the type system of the A-cube. To be
able to type the expression by using the (LAM) rule, we need s : 0.k — & to be
typable. The premises of the (PI) rule state (twice) that we need to assign a type
to O0. Because there is not a rule which assigns a type to O the candidate function
cannot be typed. If we would however extend the sorts with an extra sort, say ',
and add an extra axiom rule [] - O : O we would be able to define a ‘polymorphic
identity function on types’.

The example above illustrates that the A-cube is not general enough for all pur-
poses: the type system described above takes us outside the scope of the A-cube.
Fortunately, there is well studied generalisation of the A-cube in which the described
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system fits. This generalisation is called the the theory of PTSs. The main differ-

ences

between the A-cube and PTSs are that

in PTSs one can choose the set of sorts S freely, where in the A-cube the set
of sorts is fixed to {x, O}.

a relation A C S? is defined as the set of axioms, instead of the single axiom
* o L.

the product rule is generalised in the sense that products need not to have
the same type as their range. That is, Ilz : A.B does not necessarily have the
same sort as B. This is reflected in the fact that rules have three components
in PTSs instead of two in the A-cube.

the set of rules R can be any subset of S® instead of the specific rules from
figure 2.2.

2.7.1 The definition of PTSs

Definition 2.22 (Pure Type System)
A Pure Type System is a triple (S, A, R) where

S is a set of sorts,
A C S?%is a set of azioms,

R C 5% is a set of rules.

Sometimes we denote rules of the form (sy, s2,52) € S® by (s1,52) € S2.

Definition 2.23 (Expressions)

The set expressions E of a PTS is formed by the following grammar:

E==V|S|EE|\V :E.E|V : E.E

where V' is a countable set of variables.

Definition 2.24 (Reduction)

The reduction of expressions of a PTS is defined is the same way as for A\C.

Definition 2.25 (Contexts)
The set of contexts of a PTS is defined is the same way as for AC.

Definition 2.26 (Typability Relation of a PTS)
The typability relation - on C' x E x E for PTSs is defined by the following typing

rules:
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(axiom) Troio (s1,52) € A
(start) F’xF:l;l/'l_ :;: Y x ¢ dom(T")
T I
m SEAmDeibia e
R Y I

(APP) TF fF: |(_H_;‘Ea: :A;[i):rcz a: A

(CONV) I'ta:ATHB:S A=4 B

I'Fa:B

2.7.2 Examples of PTSs

Example 2.6 (The A-cube as a set of PTSs)
The A-cube consists of eight PTSs, where:

1. S= {0}

2. A={(x0)}

3' {(*’*)} g R g {(*’*)7 (*’ D)’ (D’*)7 (D7 D)}
Example 2.7 (An extension of \w)

Above we described a system in which the ‘polymorphic identity function on types’
can be defined. This system can be defined as a PTS by:

1. S= {*,D,D'}
2. A= {(x,0),(0,0)}
3. R= {(*,*); (Dv*)v (Dv D)v (Dla Dl)}

In this PTS we have - (Ax : O\ @ k.a) : Ik : O.6 — k.

Example 2.8 (A predicative variant of \w)

In Aw objects can be abstracted from universally-quantified types. This has the
(theoretical) drawback that it is hard to define a model for the calculus. Using PTSs
this problem can be ‘fixed” by forbidding abstractions from universally-quantified
types. See [12].

In stead of just the sorts x and O we define four sorts:

* is the kind of ‘monotypes’, with super-kind [,
*x is the kind of ‘polytypes’, with super-kind OJ.

The systems comes with the following rules:

28



1. S = {*,+x, 0,00}
2. A= {(x0),(*00)}

3. R = {(k, %, %), (5, %k, k), (x, %, xx), (3, %k, xx), (O, %, %%), (O, *x, %x), (O,0,0)}

The first four rules determine how mono- and polytyped terms interact. If one
abstracts a term from a term, and at least one of the terms is polytyped, then the
resulting term will be a polytyped term too. The following two rules, (O, , xx) and
(O, xx, %), say that it is permitted to abstract a monotype from either a monotyped
or a polytyped term, in both case the resulting term is polytyped. Finally, the last
rule, (O,0,0), states that it is permitted to abstract monotypes from monotypes.
The import thing is that the rules prevent that one can abstract polytypes from
anything; there is no rule of the form (OO, s3, $3).

Note that in the third and fifth rule the types of sy and s3 differ, that means that
the type of object that is abstracted over, and the result type are not the same. So,
this example illustrates the usefulness of the three-placed rules (as opposed to the
two-placed ones in the A-cube) of PTSs.

Assuming that Int : x on can derive the following judgements in this PTS:

o FInt:
Int is a monotype.

e FInt — Int :
Abstracting a monotyped term variable from a monotyped term yields term
with a monotype.

o FVa:*xa— Int: xk
Abstracting a monotype from a monotyped term (of type Int) yields a term
with a polytype.

o F (Va:*.a — Int) — Int : %%
Abstracting a polytyped term-variable (of type (Va : x.a« — Int)) from a
monotyped term (of type Int) yields a term with a polytype.

2.7.3 Decidability of Type Inference & Type Checking

Type checking and inference are not decidable for every PTS. Fortunately, they are
decidable for an important class of PTSs.

Theorem 2.8 (Decidability of type checking and type inference for PTSs)

Let (S,A,R) be a PTS. If S is finite then type checking and type inference are
decidable.

Proof: See [25].

2.7.4 PTSs and functional programming

The framework of PTSs adds another degree of flexibility to the A-cube by pa-
rameterising the set of sorts and the rules and axioms determining the possible
interactions between those sorts. It seems that up till now there is no urgent need
to introduce other sorts or rules than the ones available in the A-cube.
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Nevertheless, the examples above illustrate the power of the framework of PTSs,
and it would not be surprising that soon useful features of functional programming
languages are developed that need the extra flexibility of PTSs.

Therefore, we think it is good idea to use PTSs as as basis for a functional pro-
gramming language, so that we not need to redevelop our theory, and to develop
new tools, once we discover that we need to go beyond the A-cube.
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Chapter 3

Towards a programming
language

Although type systems lie at the basis of functional programming languages, a type
system -in the mathematical sense- alone is not enough to describe a functional
programming language. First of all, functional programming languages provide
features, such as algebraic data types, case expressions and definitions, whose de-
scription lies outside the scope of type systems. To describe these features we need
to extend the type system definitions of the previous chapter. Furthermore, we need
to give the operational semantics of our language, that is we have to describe how
expressions of our language are evaluated.

In this chapter we describe how we extend the PTS framework to deal with alge-
braic data types, case expressions and definitions. Next to that we will define the
operational semantics of our language.

3.1 Algebraic Data Types

Functional programming languages provide means for users to define their own data
structures, called algebraic data types. In this section we will explain how we can
extend the PTS framework to deal with algebraic data types.

3.1.1 Algebraic Data Types in Haskell

In this subsection we give several examples of Haskell definitions of algebraic data
types.

data Bool

True | False

data List a Nil | Cons a (List a)

data Tree a f = Leaf a | Branch (f (Tree a f))

The first line of code above defines Bool to be a new expression of sort type, in
the A-cube formalism we would say Bool:*. True and False are so-called data
constructors, the only way to create expressions of type Bool is by using these
constructors. We have True:Bool and False:Bool.
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The next line of code defines List to be a new type constructor, if a is a type
then List a is a type as well. In the A-cube formalism we would say List:* ->
*, The List type constructor comes with two data constructors. The first is Nil
which stands for the empty list, for every type a we have Nil:List a. The second
constructor is Cons which constructs a new list from an element and a list, for every
type a we have Cons:a -> List a -> List a.

Finally, the last line of code defines another, more complex, type constructor; the

type constructor of generalised trees. We have: Tree : * -> (¥ => *) -> * For
every two expressions a and f such that a:* and f:* -> * we have Leaf : a ->
Tree a f and Branch : f (Tree a f) -> Tree a f. As an example: Branch

[Leaf True, Leaf False] : Tree Bool List. (Where [ , ] is the standard
Haskell sugar for lists).

Definition 3.1 (Definition of ADTs in Haskell)
In Haskell the general form of an algebraic type definition is (see [11]):

data tc teay ... tcapica = dey dcaty .. deaty pdca,
| des dcats 1 ... deats pdcas
| dC#dc dca#dcyl e dcat#dc,#dmt#dc

We call tc a type constructor and tea; . .. tcazic, the arguments of the type construc-
tor. We call dc; ... dcyq. the data constructors of tc, and the dcatj;, the types of
the arguments of the data constructors. We use #tca to denote the number of type
constructor arguments, #dc; to denote the number of data constructor arguments
of data constructor j, etc.

Each tca; is a variable of sort type, each dcatj), is an expression of kind type (that
is deaji, : x) which may contain tc and teas ... tcagicq as free variables.

In the algebraic data type definition the types of the tca;’s are not specified; the
compiler or interpreter is supposed to derive them. If we assume that tca; : tcat,
then the type and data constructors have the following types.

te: teaty, — ldots — tcatpicq — *
and for all 1 < j < #de:

dcj : Vtcay :teaty, ..., tcapicq : teatpica-
deaji — ... = dcajpdca; —
(tc teay ... tcagpeq)

3.1.2 Algebraic Date Types in PTSs

A simple way to introduce ADTs in a PTS is to treat newly defined type- and data
constructors as typed variables. In that way a PTS with ADTs is a tuple which
consists of a PTS and a list of typed variables. The link between the two is that
the set of typed variables is always assumed to be part of the context which is used
in the typability relation.

For instance, if we want to introduce the Bool type in a PTS, we want the following
variables in the context:
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Bool : x, True : Bool, False : Bool

In the Haskell examples above, the type definitions are implicitly typed, the compiler
needs to derive the type of the type- and data constructors. In our PTS framework
the type definitions should be explicitly typed. This means that in an algebraic
type definition the types of the type- and data constructors should be explicitly
provided.

For instance, if we want to introduce the List type we need to specify the types of
List, Nil and Cons. So, to introduce the List type in a PTS, we have to add the
following variables to the context:

List : ¥ = x, Nil : Va : x.List a, Cons : Va : x.a — List a — List a

Furthermore, when using data constructors to form expressions we have to explicitly
provide the types at which the data constructors are ‘instantiated’. For instance,
the empty list of integers is constructed by Nil Int, instead of just Nil as in Haskell.

As a last example, to introduce the Tree data type in a PTS, we have to add the
following variables to the context:

Tree: x = (x = x) = %, Leaf : Va : x, f : x = x.a = Tree a f

Branch:Va: x, f : x = x.f (Tree a f) — Tree a f

The definition of a PTS with ADTs

Defining algebraic data type in PTSs is a delicate matter. As stated above, we have
chosen to extend a PTS with ADTs by adding a set of typed variables to the context.
The question is: which sets of typed variables should be allowed? A conservative
choice would be to allow only sets of typed variables that meet the definition of
Haskell ADTs (see definition 3.1). We feel this choice would be too conservative:
Haskell (without extensions) only allows independent data constructor arguments.
The following data type definition is therefore not allowed: a type constructor E : x
with a single data constructor EC : Va : x.a — (¢ — Int) — E. In this definition
the type of the second and the third argument of the data constructor depend on
its first argument. This kind of constructions are essential for the definition of
so called existential datatypes, (see example 3.3). Therefore, we have chosen for a
more liberal definition than the Haskell definition. Our definition is based on the
following requirements, that we feel should be met before we call a set of typed
variables a data type:

e A type constructor, say tc, has a number of arguments, called type constructor
arguments. A type constructor applied to the right number of arguments
yields an expression of kind type.

e A data constructor has as first arguments the arguments of its type con-
structor, next to that a data constructor has a number of data constructor
arguments. A data constructor applied to the right number of type- (say
teay .. .tea,) and data constructor arguments yields an expression of type
tc tcay ... tca,.
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Assuming that the type constructor is a variable named tc, which takes #tca type
arguments and is equipped with #dc data constructors named dcy, . .., dcyq. which
each take #dca; data constructor arguments, we have the following requirements on
the of the type tct of the type constructor and the types dct; of the data constructors:
(Below we use the following notation: teh = [tcar, ..., tcazicq),

d_cgzj = [dcaj, - .., dcaj pdcq,;], ete. If @ = lai,...,a,] and A= [A1,...,A,] then
we use [1@ : A.B to denote a, : A;....Tay, : A,.B.)

Jical,dcat € E -

o tct = Ilich : feal.*

for every 1 < j < #dca:
o det; = Ilich : feak.Tldca,; : deat;.te teh
o Fdcj :dctj i %

Note that the use of the dependent product (IT) in our definition to ‘link’ the
data constructor arguments makes it possible to let the types of data constructor
arguments depend on other data constructor arguments. In the Haskell definition
of ADTs (see definition 3.1) this is not possible, because there the arrow (—),
which can be seen as an independent product, is used to ‘link’ the data constructor
arguments. Because of the same reason it is hard to introduce ADTs in PTS using
‘sum’ and ‘product’ types.

In the definition of a PTS with ADTs below we use the same names as above but
we add an extra index i to keep the different introduced ADTs apart.

Definition 3.2 (PTSs with ADTSs)
A PTS with ADTs is a tuple (P, ADT'S) where:

1. P is a Pure Type System, let V, E be the sets of variables and expressions of
P.

2. ADTS = [ADTy, ..., ADT4 apr] with
(a) forevery 1 <i < #ADT :
ADT; = [te; : tet;, de;q detiq, ..., deipae, @ deti de;)s
(b) for every 1 <i < #ADT, 1< j < Fdc; :
tci,dcij € V and tct;, dctij € k.
such that for every 1 <i < #ADT"

o tct; = Tlich; : fcat; x
for every 1 < j < #dc;:

® dctij = Hﬁll : mlﬂd_cgzw : dTm)fij.(tCi ﬁll)

L] t_C>21ﬁ|_dCij 2dCtij Lk

The set of expressions, the set of contexts and the reduction relation of PTSs with

ADTs are defined in the same way as for PTS without ADTs. Of course, there is a
different typability relation.

Definition 3.3 (Typability in a PTS with ADTSs)
Let (P,ADTS) be a PTS with ADTs where ADTS is of the form as in definition

3.2:
Define ¥ = [c¢: ct|c: et + ADT, ADT + ADTS]

We say that a : A can be derived from context I' in (P, ADTS), notation
L'k (paprs) a: A, if-and-only-if ¥ +T'Fpa: A.
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Examples of PTSs with ADTs

Example 3.1 (Bool,List)
Let P = Aw and

Bool = [Bool : , True : Bool, False : Bool],
List = [List : * — *.Nil : Va.List a, Cons : Ya.a — List a — List a]
ADTS = [Bool, List]
then we have:
F(p,arps) Cons Bool True (Nil Bool) : List Bool

Example 3.2 (Mutually Recursive Data types)
Let P = Aw and

ADTS =[[A:%,AC : B — A],[B:x,BC : A— B,S: B]]

then we have:
l_(P,ATDS) AC (BC (AC S)) : A

3.2 Case Expressions

In functional programming languages ADTs often come with a special case con-
struct. In this section we will examine how we can introduce the case construct in
PTSs.

3.2.1 Case Expressions in Haskell
A typical example of the use of the case construct is the following Haskell function.

is_empty :: List a -> Bool

is_empty = \xs . case xs of
Nil -> True
Cons y ys -> False

The case construct scrutinises its argument (here xs) and matches it against the
alternatives (here Nil and Cons). If xs is equal to Nil the whole expression reduces
to False, if xs is of the form Cons y ys the expression reduces to True.

3.2.2 Case Expressions in PTSs

In our explicitly typed PTS framework data constructors should be provided with
the types they are instantiated at. To denote the empty list of integers, we use
Nil Int instead of just Nil. The same applies for the case statement, not only the
arguments of the data constructors should be matched against variables, but also
the arguments of the type constructor. For instance, a function that duplicates the
first element of a list can be defined by:

dfe : Va:«x.List a - Bool
dfe = Aa:*,xs: List a.case xs of
{Nil a = Nila

;Consayys = Consay (Consayys)}

36



The definition of a PTS with ADTs and case expressions

To extend the PTS frame work with the case construct, we extend the set of ex-
pressions with case expressions.

Definition 3.4 (Expressions)
The set expressions E. of a PTS with ADTs and case expressions is formed by the
following grammar:
E. == V|S|E.E.|\V :E.E.|NV:E,.E,
|case E, of {[V]= E¢;...;[V]= E.}

Also the reduction rules are extended:

Definition 3.5 (Reduction relation)

Let (P, ADTS) be a PTS with ADTs where ADTS is of the form as in definition
3.2. The reduction relation —. is the smallest relation on E. x E. such that for
every 1 <i < #ADT, 1< j < #dc;

case dcT of {deg,j) @i cﬁz(m) = res;} = (A@i : 17(11)5,' , cﬁz(m) : c?m)f(m).resj) T

and closed under the usual rules.

The reduction relation — g, is defined by
—gc=—rg U —¢

The typability relation is extended with a rule for case expressions, the (CONV)
rule is extended with reduction of case expressions, so that types which contain case
expressions can be properly typed.

The conclusion of the (CASE) rule binds e, the dc;, the IE)L]-, the Hlj and the res;
to the right expressions. The first premise of the (CASE) rule binds the actual type
constructor arguments to actd. The second premise derives, using the type of the
data constructors dc; and the actual type constructor arguments, the types of the
@j and binds them to mj. The third premise checks whether the types of the
right hand sides, instantiated to the actual type constructor arguments, are equal,
and if so the result is bound to ¢. Finally, the fourth premise checks whether the
derived type is well formed.

Definition 3.6 (Typability relation)

Let (P, ADTS) be a PTS with ADTs where ADTS is of the form as in definition
3.2. The typability relation . on C' X E. x E. is defined by the rules of definition
2.26, extended with:

I'k.e:tecatca

Vi b de; atch : Tdca, : deat;.(te atch)
(CASE) V]F,CE)l] . Cm.j I_C T‘eS]'[Iz)l]‘ = Cm]] it

Fk.t:s
I k. case e of {dc; ﬂzj CE]' =>resj}:t
and where the (CONV) rule is replaced by:
'ca:ATFH.B:S A=p4.B
't.a: B

(CONV)



Let ¥ =[c: ctle: ct + ADT,ADT < ADTS]
We define I' F.(p aprs) a: A by

Fl—c(P,ADTS) a:A<:>E++-F|—Ca:A

The working of the case rule is illustrated by the following instantiation of the rule:
I' = [List : * = *.Nil : Va.List a, Cons : Va.a — List a — List a,xs : List Int]

I' . xs : List Int
I' F. Nil Int : List Int
I' F. Cons Int : Iz : Int.ITzs : List Int.List Int
[' k. Nil ¢[t := Int] : List Int
[,z : Int,zs : List Int - Cons ¢ = (Nil ¢)[t := Int] : List Int
I' -, List Int :
', case xzs of
{Nil ¢ = Nil¢
;Cons t s = Cons ¢t x (Nil ¢)} : List Int

Examples of the use of case expression in extended PTSs

Example 3.3 (Existential Data Types)

This example shows that existential data types, in the form as introduced by Laufer
in [14], come ‘for free’ in our extended PTSs. In Laufer’s construction we consider
data constructor arguments of sort type as existentially quantified. For example in
the ADT: [E : x,EC : Va : x.a — (a = Bool) — E], we say that a is an existentially
quantified variable. We consider a to be existentially quantified because when we
have an expression of type E, say e : E, then we know that there ezists a type a
such that e = EC a z f with z : @ and f : @ — Bool. Although we do not know
which a we are dealing with, we do know that we can apply f to z which results in
an expression of type Bool.

The idea behind existential polymorphism is that a term of an existential type
is like an object with some data being ‘private’, and not available for external
manipulations, and other data being ‘public’ and available for external use.

We illustrate the use of ‘existentials’ below.
P = A\
Ex = [E:%xEC:Va:*a— (a — Bool) —» E],

[

List = [List : * = %.Nil : Va.List a, Cons : Ya.a — List @ — List a]
Nat = [Nat : x, Zero : Nat, Succ : Nat — Nat]
ADTS = |[Ex,List,Nat]
isEmpty : Va.List a - Bool
isEmpty = Aa:*,Azs: (List a).

case zs of

{Nil ¢ = True

;Const x zx = False

}
apply : E — Bool
apply = Xe: E.

case e of
{ECtaz f = f=x
}
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then we have:
Fep,arps) EC (List Int) (Nil Int) (isEmpty Int) : E
Fe(parps) EC Bool False (id Bool) : E
Fep,aTps) apply (EC Bool False (id Bool)) : Bool
Fe(parps) apply (EC (List Int) (Nil Int) (isEmpty Int)) : Bool
apply (EC Bool False (id Bool)) —» 3. False
apply (EC (List Int) (Nil Int) (isSEmpty Int)) —» 3. True

In Laufer’s construction existentially quantified variables are not allowed to escape
the scope of the quantifier, as in the following function:
apply’ = JXe:EC.
case e of
{ECtz f = =
}

The reader can check that the fourth premise of the (CASE) rule, which demands
that the derived type is typable, is not met. Therefore this expression is indeed not
typable in our extended PTS.

Example 3.4 (Dependent Types)

In this example we illustrate the use of dependent types; types that depend on
terms. We give an implementation of nzip, a n-ary zip function, that is a function
that for arbitrary n zips n lists together. The function takes as first argument a list
of types, and as second argument a nested product of lists of those types. For exam-
ple, if the first argument is [Int, Bool, Nat] (we use a sugared notation for the list of
types here), then the type of the second argument is (List Int, (List Bool, List Nat))
(again we use a sugared notation, this time for products, leaving out some of
the explicit typing). Because the second (type-)argument depends on the first
(term-)argument we need dependent types to describe this function. Suppose the
second argument is ([1,2], ([True, False], [Zero, Zero])), then the output of the func-
tion will be [(1, (True, Zero)), (2, (False, Zero))]

First we introduce the list of types ADT:
[ListT : %, OneT : x — ListT, ConsT : x — ListT — ListT)
and the pair ADT:
[PairT : Va : x,b: *.%,Pair : Va : x,b: x : a = b — PairT a b)

The mapT function defines a map over a list of types.

mapT : (x = x) — ListT — ListT
mapT = Af:(x = %).Ats: ListT.
case ts of

{OneT ¢ = OneT (ft)
;ConsTtr = ConsT (f t) (mapT f r)}

The prodT function maps a list of types into a product of types.

prodT : ListT — %
prodT = Ats: ListT.
case ts of

{OneT ¢ = t
;ConsT ¢t r = PairT ¢ (prodT r)}
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To define nzip we need the normal zip function. Because its implementation is not
interesting, we only give its type.

zip : Ila:*,b:.List a — List b — List (PairT a b)

nzip recursively breaks down the list of types ts and the product of lists zs. Note
that the outer most case expression has a explicit type signature. The reason
for this is the following. The xs on the right hand side of the OneT _ has type
prodT (mapT List ts ). Assuming that ¢s if of the form OneT _ it can be derived
that prodT (mapT List ts ) =g List (prodT ts). So, in that case the s on the right
hand side of OneT _ also has the type List (prodT ts). However the information
that ts is of the form OneT _ is not taken into account by the (CASE) rule. Be-
cause the scrutinezed expression can be of arbitrary complexity it is not in general
possible to take the consequences of the form of the scrutenized expression into
account. So, with dependent types, the typing rules cannot always deduce the type
of case expressions, therefore we allow, just as in Cayenne [1], case expressions to
be explicitly typed.

nzip : Its: ListT.prodT (mapT List ts ) — List (prodT t¢s)
nzip = Ats: ListT.

Azs : prodT (mapT List ¢s).

case ts of

{OneT _ = x5

;ConsT t' ts' = case zs of
{Pair _ _ zs' prs' = nzip t’' (prodT ts') zs' (nzip ts' pzs')}
} : List (prodT ts)

3.3 Definitions

In most functional programming languages a program consists of number of defi-
nitions. The purpose of a definition is to introduce a binding associating a given
variable with a given term. The variable can be used in the rest of the program as
an abbreviation referring to the term.

In this section we will explain how we can extend the PTS framework to deal with
definitions.

3.3.1 Definitions in Haskell

We will illustrate the use of definitions by the Haskell program below

double :: Int -> Int
double = \n . n +n

quadruple :: Int -> Int
quadruple = \n . double n + double n

in this program the variable double in the definition of quadruple refers to the
definition of double above.

The effect of the definition of double is twofold. First of all, it introduces a new type
binding: double :: Int -> Int, that will be used in the type checking process.
Furthermore, the definition affects reduction. For instance double 3 will reduce to

(\n . (n +mn)) 3.
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3.3.2 Definitions in PTSs

As illustrated in the Haskell example above, the introduction of definitions affects
both the typability and the reduction relation. This is reflected in the definitions
below.

Definition 3.7 (PTSs with ADTs and definitions.)

A PTS with ADTs and definitions is a triple PAD = (P, ADTS, DS), where
(P,ADTS) is a PTS with ADTs and DS = [Dy,...,Dxq4s] is a list of definitions
with

e forevery 1 <i < #ds: D; = (v;:ti,e;) withv; €V, t;,e; € E,
e A= [’Ul : tl,. cey Udtds - t#ds]-
such that for every 1 <1 < #ds :

1. there exist an s € S s.t. [vy 1 #1,...,vi 1 ti 1] Fes(paDTS) ti 0 8
2. AtcspapTS) €t Li

The first clause demands that types of defined variables should be well formed.
Because type t; may contain the defined variables vy, ...,v; 1 their type bindings
are assumed in the context. The second clause demands that the expression which is
referred to by a certain variable has indeed the type of that variable. Because both
the expressions e; and their types ¢; may contain the defined variables vy, ..., v44s,
their type bindings are assumed in the context. The typability relation for PTSs
with ADTs and definitions F.5p apTs), is defined below.

Definition 3.8 (Reduction relation)

Let (P, ADTS, DS) be a PTS with ADTs where ADTS is of the form as in definition
3.7. The delta reduction relation, denoted — ¢, is the smallest relation such that for
every 1 < i < #ds :

Vi =5 €

and closed under the usual rules.

The reduction relation in a PTS with ADTs and definitions, denoted — s, is
defined by:

—gsc=—r3 U =5 U —¢

Definition 3.9 (Typability relation)
Let (P, ADTS, DS) be a PTS with ADTs where ADTS is of the form as in definition
3.7. The typability relation .5 on C' x E. x E. is defined by the rules of definition
3.6 where the (CONV) rule is replaced by:
Fl—caa:A F"ch:S A:Bc(gB

ltesa:B
Let ¥ = [c: ctle : ¢t < ADT,ADT < ADTS] and A = [v1 : t1,...,Vpds © txds]-
We define T’ '_CJ(P,ADTS) a:A by

(CONV)

L tespaprs,ps) a: Ao S+HAHIF.a: A
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Examples of the use of definitions in extended PTSs

Example 3.5 (The map function on lists)

Let:
P = Jw
List = [List:* — %.Nil : Va.List a, Cons : Ya.a — List a — List a]

We can define the map function on list as follows. Note that due to explicit typing
the map function takes two type arguments.

( map:Va:*b:*.(a—b) — List a — List b,

Aa :x, b ox.

A i (a—Db),xs : (List a).
case zs of

{Nil ¢ = Nilb

;Constzxzr = Consb (fr) (mapabd fzx)

}

3.4 Undecidability

Unfortunately, the extension of PTSs with ADTs, case expressions and definitions
causes undecidability of type checking. The problem lies in the side-condition
A =pgsc A’ of the (CONV) rule. Checking whether two arbitrary terms are (dc
equivalent is undecidable. The problem can be repaired by making sure that types
are strongly normalising, in that case we can just reduce A and A’ to normal form,
and check whether the normal forms are equal. So, we can replace the side-condition
by AN € E: A —»3s5c N, A" =35 N. To make sure that types are strongly nor-
malising we have to forbid dependent types and (general) recursion on the level of
types. In section 4 we prove that a system constructed in this way has a decidable
type checking problem.

3.5 Operational Semantics

The operational semantics of a functional programming language defines the way
expressions are reduced. Part of the operational semantics is defined by the reduc-
tion rules of our language. The reduction rules do not specify which subexpression
should be reduced when multiple subexpressions of a term are reducible. Con-
sider, for instance, in a PTS with the definition (id : Int — Int, (An : Int.n)), the
expression:

(Az : Int.\y : Int.y)(id 3)(id 5)

We can reduce this expression to normal form by in different ways. For instance via

(Az : Int.\y : Int.y) (id 3) (id 5) —5
(Az :Int.A\y : Int.y) ((An : Int.n) 3) (id 5) —g
(Az : Int.\y : Int.y) 3 (id 5) —5
(Az : Int.\y : Int.y) 3 ((An : Int.n) 5) —3
(Az : Int.\y : Int.y) 3 5 —3
(A\y : Int.y) 5 —3

ot
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but also via:
(Az : Int. Ay : Int.y) (id 3) (id 5) —p

(Ay : Int.y) (id 5) —3
id 5 6
(An :Int.n) 5 —3
5

A reduction strategy defines which subexpression of a term should be reduced when
multiple subexpressions are reducible. A reducible subexpression is called a redez.

Definition 3.10 (Reduction Strategy)

A reduction strategy F' is a map F' : E. — E. such that M —g5. F(M) for all
M € E.

Definition 3.11 (Redeces)
Let (P,ADTS,DS) be a PTS with ADTs, case expressions and definitions, of the
form as in definition 3.7.

A (sub)term M is called a

e a f-redex, if M is of the form (A\z : A.N) M,
e a case redex, if M is of the form case de N of {...}, with de € ADTS,

e a d-redex, if M is of the form v;, with (v;,e;) € DS.

We have chosen the normal order reduction strategy for evaluating expressions. This
strategy says that iteratively the left-most outer-most redex should be reduced. We
have chosen for this reduction strategy because it is a lazy strategy which means
that redeces are only reduced if their result is needed to achieve a normal form. (We
do not associate the term lazy with sharing of objects in memory.) Lazy strategies
are attractive because they make it possible to work with infinite data structures. It
is outside the scope of thesis to go into all the differences between lazy and non-lazy
languages, we refer the interested reader to [19].

Definition 3.12 (Left-Most Outer-Most Redex)

Let N € E and let B € E be redeces of N. We say that R € B is an outer-most
redex, if there exist no R' € R such that R is a subexpression of R'. We say that
R is the left-most outer-most redex of FE if there is no outer-most redex R" €
such that R is to the left of R in the tree representation of N.

Definition 3.13 (Normal Order Reduction Strategy)

The normal order reduction strategy is defined by F(M) = M' where M’ is the
result of reducing the left-most outer-most redex of M. If M is normal-form than
M' =M.

An example of a reduction that uses the left-most outer-most strategy is the second
reduction of (Az : Int.Ay : Int.y) (id 3) (id 5) above.

Definition 3.14 (Operational Semantics)

The operational semantics of our extended language is defined by the [-,§- and
case-reduction rules and the normal order reduction strategy.
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Chapter 4

Type Checking PTSs

In this chapter we investigate a type checker for the language introduced in the
previous chapter. First, we study Barthe’s type checking algorithm for the class of
so-called injective PTSs. Then, we investigate how his algorithm can be modified
to deal with our extended language.

4.1 Barthe’s algorithm

4.1.1 Introduction

Many interesting PTSs have decidable type checking. For those systems the question
arises whether there exist efficient type checking algorithms. Often type checking
algorithms are based on a set of syntaz-directed rules. Informally, a set of rules is
syntax directed if there is at most one way to derive a type for a given term M in a
given context I' and the type is unique. The typing rules for PTSs are not syntax
directed, in particular because the (CONV) rule can be applied at any moment in
a derivation.

One way of constructing a type directed set of rules for PTSs is to ‘distribute’
the (CONV) rule over the other rules. In this way we arrive Robert Pollack’s
syntax directed rules for PTSs[25]. Unfortunately, the completeness of these rules
is an open problem up till now. The main problem in proving the completeness of
Pollack’s rules lies in the second premise of the (LAM) rule (ITz : A.B) : s. When
trying to prove the completeness of the rules by induction on the derivations, the
induction step for the (LAM) rule cannot be completed, precisely because of its
second premise. A full analysis of the problems with a proof of the completeness of
Pollack’s rules lies beyond the scope of this paper, see [20].

Barthe’s [4] solution to Pollack’s problem is to formulate a new (LAM) rule, based
on the so-called classification algorithm, and to distribute the (CONV) rule over
this new set of rules. Barthe’s rules give a sound and complete syntax directed
system for the class of injective PTSs. Below we will introduce the concepts of
injectivity, the classification algorithm and Barthe’s classification based rules.

4.1.2 Injective PTSs

A PTS is functional if given a sort s; there is at most one sort so such that (s, s2)
is an axiom, and if given sorts s1, so there is at most one sort s3 such that (s1, s2, s3)
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is a rule. The definition of injective PTSs is a slight variation this theme.

Definition 4.1 (Injective)
Let P = (S, A, R) be a PTS.

e We say P is functional if for every s1, s2, 8}, 83,54 € S:

(s1,82) € A & (s1,sh) €A = 8y = sh
(s1,82,83) €E R & (s1,82,85) ER = s3 =35}

e We say P is injective if it is functional and for every s1, s2, s}, s3, 54 € S:

(s1,52) € A & (s),s2) € A = s =5
(s1,82,83) ER & (s1,8h,83) ER = sy =6}

Theorem 4.1 (Injectivity of the A-cube)

All the systems of the A-cube are injective.
Proof: Easy.

In an injective PTSs, given a sort s, there is at most one sort s, such that (sq, s2) is
an axiom, and therefore we can define a function from sorts to sorts which, given a
sort s; yields either the unique sort so such that (s, s2) is an axiom or 1 (denoting
undefined), if no such ss exists. For injective PTSs we can define a number of such
mappings.

Definition 4.2 (.=, .7, p, u)
For every set A, we let AT denote the set AU {1}. If f € A — BT and a € A, we
write f a | to denote f a #1.

e The map .~ : ST — ST is defined by:

1T otherwise

_ { s if(s',s) e A
e The map .* : ST — ST is defined by:
5T = !
1T otherwise

_ { s if (s,8") € A

e The map p: ST x ST — ST is defined by:

. S3 if (81,827 83) € R
p(s1,82) = { 1 otherwise

e The map p: ST x ST — ST is defined by:
sg if (s1,83,82) € R

pn(s1,s2) = { 1T otherwise
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4.1.3 Classification

Injective PTSs form a class of PTSs for which one can define two ‘simple’ functions
sort(.|.),elmt(.|.) : C x ET — ST such that:

F'FM:A & THA:s = elmt(I'|M)=s
r-M:s & s€eS = sort(['|M) = s

The classification lemma below tells us that for every term in an injective PTS we
can compute the type of type of the term by using elmt(.].). Note that this type
of the type of the term is always a sort. For terms whose type is a sort we can
compute this sort by using sort(.].).

Keeping the typing rules of the PTSs framework (definition 2.26), and the definitions
of .=, . T, p, p in mind, all rules, expect for the cases of Az : A.M and M N in the
definition of the elmt function, are quite easy to understand.

The key to understanding the working of the two more complicated rules is the fact
that the last two steps in a derivation of the type of a lambda expression are always
(LAM) and (PI), and the last two steps in a derivation of the type of an application
are always (APP) and (PI).

Definition 4.3 (Classification Algorithm)
The functions sort(.|.),elmt(.|.) : C x ET — ST are defined as follows:

sort(T'| 1) = 1
sort(T'|z) = (elmt(T|z))~
sort(T|s) = sT

elmt(T'|M N )~
(elmt(C|A\z : A.M))~
= p(sort(I|A),sort(T,z : A|B))

sort(C|A\x : A.M
sort(T'|Ilz : A.B

)
)
)
sort(C|M N)
)

elmt(T|
elmt(T|z sort(Lpl|A), if T =T,z : A, T
elmt(T|s st

) = 1
|

elmt(T'|M N) = p(elmt(T|N),elmt(T'|M))
)
)

elmt(C| Az : A.M p(sort(T|A), elmt (T, z : A|M))
elmt(C|lz : A.B) = (sort([|llz : A.B))*

Theorem 4.2 (Classification Lemma)
Let P = (S, A, R) be an injective PTS, then:

'FM:A & T'FA:s = elmt(I'|M)=s
r-M:s & seS = sort(['|M) = s

Proof:
See [4].

4.1.4 Classification Based Rules

In this subsection we present Barthe’s classification based rules, which give a sound
and complete syntax directed system for the class of injective PTSs. In Barthe’s
classification based rules the ‘problematic’ premise (Ilz : A.B) : s in the (LAM)
rule is changed to a simpler to calculate premise containing the functions sort(.|.)
and elmt(.|.). Furthermore, in Barthe’s rules the (CONV) rule is distributed over
the other rules using the notion of weak-head reduction.
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Definition 4.4 (Weak-head reduction)
Weak-head reduction —,,p, is the smallest relation such that for every x € V and
A,P,Q,RecE

(A\r:AM)N B —un Mz =N B

(Weak-head reduction differs from S-reduction in the sense that weak-head reduc-
tion is applied only at the top level of a term)

The reflexive-transitive closure of —,; is denoted by —» .

We write I' = M :—»,,;, A for

JA' e ETHFM: A" and A" =, A

In the Barthe’s classification based rules the ‘problematic’ premise (Ilz : A.B) : s in
the (LAM) rule is changed to the simpler to calculate premise
p(sort(T|A),elmt(T,z : A|b)) |. It is easy to see that (Ilz : A.B) : s together
with the other premise I',z : A+ b : B implies p(sort(T'|A4), elmt(T, z : A|b)) J: If
(Ilz : A.B) : s then by the (original) (PI) rule we have '+ A: sy ; 0,z : AF B : sy
and (s1, $2,5) is a rule. We know s; = sort(I'|A), s = elmt(T', z : A|b) and because
(s1,82,s) is a rule we have p(sort([|A), elmt(T", z : Alb)) J.

Definition 4.5 (Classification Based Rules)

The typability relation -, on C'x E x E for PTSs is defined by the following typing
rules:

(axiom) TFusi o (s1,82) € A

(start) FF Ce j:;jh s 2 ¢ dom(I)

(weak) — ?, ;I?CFFC,CZAC: E»M - @ ¢ dom(T)

(PI) FI"xI—:ClA(ll'I;:l :BA:.;’”:}LS? sort(['|A) = s; and (s1,$2,53) € R
(LAM) — (FA:;” ibF)Cf (bH e 5 p(sort(T|A), elmt (T, 2 : A[b)) |
(APP) Thyfi—=»wn (lz: A'B) Thya: A A=y A

Ity fa: Bz :=aq]

Theorem 4.3 (Soundness and completeness of k., w.r.t. )

Let P = (S, A, R) be an injective PTS, then:

'raM:A = TTHFM:A
'FM:A = FJA€ETlFgM:A &A =5 A

Proof:
See [4].
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4.2 Extending Barthe’s algorithm to our language

In chapter 3 we extended the theory of PTSs with algebraic data types, the case
construct and definitions. In this section we extend Barthe’s algorithm to deal with
these extensions. We add clauses to the classification algorithm to deal with the
new expressions, and we extend the typing rules with the rules introduced in the
previous chapter.

4.2.1 Extended Classification Algorithm

The rules for n and Int are simple. The sort-rule for case expressions uses the fact
that if the type of a case expression is a sort then the type of the case expression is
the type of the right hand side of an alternative. The elmt-rule uses the same fact
for the type of the type of a case expression.

Definition 4.6 (Extended Classification Algorithm)

The functions sort(.].),elmt(.|.) : C' x ET — ST are defined by the rules of 4.3,
extended with:

sort(T'|ln) = 1
sort(C|Int) = «
sort(I'|case e of {dc tch, dea = res}) = sort(I‘,IfgL : feal, dca - cﬁﬂres)
elmt(Cln) = *
elmt(CInt) = 0O
elmt(T|case e of {dc tch dea = res}) = elmt(F,Ht : feal, dca, - dc—m>§|res)

where in the both rules for case we have the side condition:

dc : TI#ch, - feat.Tldea - deat.(te ) € T

4.2.2 Extended Classification Based Rules

The extended classification based rules are the original classification based rules
extended with the rules of the previous chapter.

Definition 4.7 (Extended Classification Based Rules)
Given a PTS with ADTs and definitions (P = (S, A, R), ADTS, DS).

The extended typability relation .., on C' x E. x E. is defined by the following
typing rules:
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(ax10m) m (51, 52) €A
r I_ecl A 5_»%2 S
(start) T2 AFc: A x ¢ dom(T")
DChey A: B Theq C:—4l s
(weak) T2 CF, A DB x & dom(T")
D,x:Aboq B:—% s
(PI) e (ﬁ;’ : AB)BfiCs; sort(T|A) = s, and (s, s, 53) € R
Iz:ArF.qb: B
(LAM) AEOvEY) ’ A5 p(sort(T|A), elmt(T, z : A[b)) |
Phea f :—»}%LC (Mlz : A”.B) Theqa:A _ ,
(APP) koo fa: Blz = al A =psc 4
Chege:te alca
Vj.l Fee dej atca - HCH;]' : mj.(tc atcd)
(CASE) ‘v’j.F,(E;j : mj Feet Tes;[TCh; 1= actly] : t
T |_ecl t:s
T b case e of {dc; tca; dea; = res;} : t
(INT) TFon o Int nen
(INT-
TYPE) koo Int v

4.2.3 Undecidability

As noted in chapter 3, the extension of PTSs with ADTSs, case expressions and
definitions causes undecidability of type checking. The rules above are syntax di-
rected, so given an expression an algorithm can always decide which rule to apply.
Unfortunately, because checking whether two arbitrary terms are Sdc equivalent is
undecidable, an algorithm cannot always decide whether the (APP) rule (with side
condition A =gs. A') is applicable.

The problem can be repaired by making sure that types are strongly normalising. In
that case we can just reduce A and A’ to normal form, and check whether the normal
forms are equal. So, we can replace the side-condition by AN € E. : A —%35. N,
A" = 5. N. To make sure that types are strongly normalising we have to forbid
dependent types and (general) recursion on the level of types.

If we change the side condition this way, all side conditions of the rules are decidable.
Furthermore, because the rules above are syntax directed, we can prove by an
easy induction on the structure of the expression that the type checking process
terminates. Therefore the rules above yield a type checking algorithm.
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Chapter 5

Implementation

In this section we describe our implementation of a type checker and an interpreter
for our language. Because the typechecker uses the interpreter, and not the other
way around, we give the implemenatation of the interpreter before we give the
implementation of the typechecker. But first of all we introduce the data structures
that are used in both the interpreter and the type checker.

5.1 Preliminaries

5.1.1 Abstract Syntax

-- The Program
data Program
= Program [TDecl] [VDecl]

-- Data Type Declarations
data TDecl
= TDecl TCons [DCons]

type TCons = TVar -- Type Comnstructor
type DCons = TVar -- Data Constructor

-— Value Declaratiomns
data VDecl
= VDecl TVar Expr

A program is a set of type- and value declarations. A type declaration is a pair
of a type constructor and a set of data constructors. A value declaration binds a
variable to an expression.

-- Expressions
data Expr

= LamExpr TVar Expr —-- Lambda Abstraction
| PiExpr TVar Expr -- Pi

| AppExpr Expr Expr -- Application

| CaseExpr Expr [Alt] Expr -- Case

| VarExpr TVar -- Typed Variable

| LitExpr Lit -- Literal
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| SortExpr Sort -- Sorts
| Unknown

The expression data type closely follows the abstract syntax of PTSs. A new clause
Unknown is introduced for unknown types.

-- Typed Variables
data TVar
= TVar Var Expr

-— Variables
data Var

= Var String
| Anonymous

In our implementation every variable is annotated with its type. We will explain
the advantages of this approach in the next section.

-— Case Alternatives
data Alt
= Alt TCons [TCA]l [DCA] Expr

type TCA
type DCA

TVar -- type constructor argument

TVar -- data constructor argument

The case alternative data type follows the definition in the chapter 3.

-- Literals
data Lit

= LitInt Integer
| IntType

There are two literals: integers and the integer type.

-— Sorts
data Sort

= Star

| Box

| SortNum Integer

In the sort definition there are special clauses for x and . Other sorts can be
introduced by enumeration.

5.1.2 Delta Rules

Definitions in our language (defined in 3.7) are internally represented as a list of
delta rules. A delta rule is is a tuple of a variable and an expression. The meaning of
a delta rule of form DeltaRule v e is that the variable v reduces to the expression
e.

51



data DeltaRule
type DeltaRules

DeltaRule TVar Expr
[DeltaRulel

The link between a program and its list of delta rules is straightforward.

prog2DeltaRules :: Program -> DeltaRules

prog2DeltaRules (Program _ vdecls) = map vDecl2DeltaRule vdecls

vDecl2DeltaRule :: VDecl -> DeltaRule
vDecl2DeltaRule (VDecl tv ex) = DeltaRule tv ex

5.1.3 Substitutions

A main ingredient of both the interpreter and the type checker is substitution. The
function applySubst performs substitution, it can be applied to values whose type
is in the class SubstC.

data SSubst = Sub TVar Expr -- singleton substitution
type Subst = [SSubst]
class SubstC t where

applySubst 1 Subst >t >t

5.2 Implementing an Interpreter

The operational semantics of our language has been formalised in section 3.5. In
this section we give an implementation of the operational semantics in the form
of an interpreter. An interpreter is a function which given a program reduces the
main term of this program to a certain normal form. The implementation of the
interpreter is divided into two parts, the first part implements the reduction of
single redeces, the second part implements the reduction of complete expressions
using the normal order reduction strategy.

5.2.1 Reducing Redeces

Recall from 3.5 that, given a PTS with ADTs and definitions, (P, AD,DS), a
B-redex is an expression of the form (Ax : A.M) N, a d-redex is an expression
of the form v with (v,e) € DS, and a case-redex is an expression of the form
case dc T of ... with dc a data constructor.

The function isRedex checks whether an expression is a redex. If the expression is
indeed a redex the function tells us whether the expression is a 3, § or case redex.
If the expression is a delta redex the isRedex function also returns the delta rule
which matches the expression.

Actually, isRedex does not completely comply to the definition of case redeces.
For every expression of the form CaseExpr ex _ _, isRedex returns CaseRedex,
while only case expressions of which the left most sub expression of ex is a data
constructor are case redeces. We have chosen for this deviation because checking
whether something is indeed a genuine case redex would be quite costly in terms of
performance.
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data RedexInf = NoRedex

| BetaRedex
| CaseRedex
I

DeltaRedex DeltaRule

isRedex :: DeltaRules -> Expr -> RedexInf
isRedex deltaRules expr
= case expr of

AppExpr (LamExpr _ _) _ -> BetaRedex
CaseExpr _ _ _ -> CaseRedex
VarExpr tv -> case lookup’’ tv deltaRules of
Just deltarule -> DeltaRedex deltarule
Nothing -> NoRedex
- -> NoRedex
lookup’’ :: TVar -> DeltaRules -> Maybe DeltaRule

reduceRedex reduces a redex expression, given information about this redex. It
matches against the information in the ri argument and calls the appropriate reduce
function.

reduceRedex :: DeltaRules -> RedexInf -> Expr -> Expr
reduceRedex dr ri ex = case ri of

BetaRedex -> reduceBeta ex

CaseRedex -> reduceCase dr ex

DeltaRedex drl -> reduceDeltaRule ex drl

reduceBeta simply performs a substitution as defined for 3-reduction in definition
2.24.

reduceBeta :: Expr -> Expr
reduceBeta (AppExpr (LamExpr tv exl) ex2)
= applySubst [(Sub tv ex2)] exl

Given an expression of the form CaseExpr ex alts _, reduceCase reduces ex to
its weak head normal form whnf, using reduce_to_whnf which is defined below.
Reducing ex to its weak head normal form ensures that the left most sub expres-
sion is a data constructor. The reduceBeta function matches whnf against the
alternatives using lookupA. A lambda expression with as body the right hand side
of the matching alternative will be substituted for the left most sub expression of
the weak head normal form, as defined in definition 3.5.

reduceCase :: DeltaRules -> Expr -> Expr
reduceCase dr (CaseExpr ex alts _) =
case lookupA whnf alts of
Just (Alt tc tcas dcas res) —->
applySubToLeftMost [Sub tc (foldr LamExpr res (tcas++dcas))] whnf
Nothing ->
error $§ "runtime error: missing alternative in case expression"
where whnf = reduce_to_whnf dr ex

lookupA :: Expr -> [Alt] -> Maybe Alt
applySubToLeftMost :: Subst -> Expr -> Expr
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reduceDelta implements definition 3.8. Because the matching delta rule is given,
the function simply returns the second argument of the rule.

reduceDelta :: Expr -> DeltaRule -> Expr
reduceDelta _ (DeltaRule _ ex2) = ex2

5.2.2 Reducing Expressions

In the previous subsection we described our implementation of the reduction of
redeces. In this subsection we will look at the reduction of expressions. Because
an expression may contain more than one redex we need to make a choice in which
order the redeces of an expression are reduced. The order in which redeces are
reduced is called a reduction strategy. (see section 3.5.)

We have chosen the normal order reduction strategy for evaluating expressions. This
strategy says that itteratively the left-most redex should be reduced (see section 3.5
for the reasons we chose this strategy.).

When evaluating expressions the final result should be a instance of an algebraic
data type or a constant, and not a function. That means that redeces inside a
A-expression do not have to be reduced.

The function eval reduces expressions using the normal order reduction strategy,
while neglecting redeces inside A-expressions. eval can be implemented more effi-
cient if the result of the eval function applied to an expression tells whether or not
a reduction has taken place. Because of this reason eval applied to a list of delta
rules and an expression yields a value of type Maybe Expr. If medium has reduced
any redeces of the expression it will ouput a value of the form Just exr, where exr
is the reduced expression, otherwise it will output Nothing.

If the expression at hand is a redex eval reduces it, and recursively tries to reduce
it again. If the expression is an application, eval calls evalApp. evalApp first tries
to reduce the left sub expression, if that succeeds it recursively calls eval upon the
whole expression, if the left sub expression can not be reduced it will try to reduce
the right sub expression. If this it is possible eval will return the whole expression,
note that in this case no recursive call is needed.

eval :: DeltaRules -> Expr -> Maybe Expr
eval dr ex

mplus (eval dr reduced)
(Just reduced)

evalApp dr ex

Nothing

| redexinf/=NoRedex

| isApp ex

| otherwise

where redexinf = isRedex dr ex
reduced (reduceRedex dr redexinf ex)

evalApp dr exQ@(AppExpr exl ex2) =
case (eval dr exl) of
Just exlr -> mplus (eval dr (AppExpr exlr ex2))
(Just (AppExpr exlr ex2))
Nothing -> case (eval dr ex2) of
Just ex2r  -> Just $ AppExpr exl ex2r
Nothing -> Nothing
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The function eval reduces expressions using the normal order strategy and stops
when it reaches a normal form or a lambda expression. Next to eval we need
two other reduction functions: a function strong which reduces expressions to a
normal form (and does not stop when it reaches a lambda expression). strong is
used in the implementation of the (APP) rule, see section 4.2.3. Furthermore, we
need a function weak which reduces expressions to their weak head normal form
(see definition 4.4). weak is used in the ReduceCase function (see above) and the
implementation of the :—,, relation in the type checker (see section 5.3.4).

The difference between weak and eval is that weak does not try to reduce the right
subexpression in an application.

weak :: DeltaRules -> Expr -> Maybe Expr
weak dr ex
| redexinf/=NoRedex

mplus (weak dr reduced)
(Just reduced)

| isApp ex = weakApp dr ex
| otherwise = Nothing
where redexinf = isRedex dr ex

reduced = (reduceRedex dr redexinf ex)

weakApp dr (AppExpr exl ex2) =
case (weak dr ex1) of
Just exlr -> mplus (weak dr (AppExpr exlr ex2))
(Just (AppExpr exlr ex2))
Nothing  -> Nothing

The difference between strong and eval is that strong does not stop when it
reaches a lambda expression.

strong :: DeltaRules -> Expr -> Maybe Expr
strong dr ex

| redexinf/=NoRedex = mplus (strong dr reduced)
(Just reduced)
| isApp ex = strongApp dr ex
| isLam ex = stronglLam dr ex
| otherwise = Nothing
where redexinf = isRedex dr ex
reduced = (reduceRedex dr redexinf ex)

stronghApp dr exQ(AppExpr exl ex2) =
case strong dr exl of
Just exlr -> mplus (strong dr (AppExpr exlr ex2))
(Just $ AppExpr exlr ex2)
Nothing -> case (strong dr ex2) of
Just ex2r -> Just $ AppExpr exl ex2r
Nothing  -> Nothing

stronglam dr (LamExpr (TVar var exv) ex)
= if
(isNothing mexvr && isNothing mexr)
then
Nothing
else
do{exvr<-mplus mexvr (Just exv)
;exr <-mplus mexr (Just ex)
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;return $ LamExpr (TVar var exvr) exr
where
mexvr = strong dr exv
mexr = strong dr ex

5.3 Implementing the Type Checker

Implementing the type checker according to the extended classification based rules
of definition 4.7 is straightforward. We use a simple write monad to side effect error
messages.

5.3.1 Annotating bound variables

In PTSs the binding variables in A- and II-expressions are annotated with their
type. The type of a bound variable is derived by means of the (var) and (weak)
rules.

In our implementation every variable is annotated with its type. For example:
the expression \f:Int -> Int.(\n:Int . f n) will be internally represented as
\f:Int -> Int.(\n:Int . f:(Int -> Int) n:Int). This simplifies the design
of the type checker; when we annotate every variable with its type the type checker
does not need to ‘plumb around’ an environment, and the implementation of the
uninteresting rules (var) and (weak) can separated from the implementation of the
interesting rules.

The process of annotating bound variables in programs is carried out by the function
timain which takes as argument a program and returns the program in which every
bound variable is annotated with its type. We refrain from giving the, straightfor-
ward, implementation of timain, but will illustrate its working with an example.

A variable can be bound in three different ways:

1. By a A or IT quantifier.
2. By a data type definition.

3. By the left hand side of a case alternative.

In the program below all three forms of bindings are present.

data List : * -> x
= { Nil : \/a:* . List a
; Cons : \/a:* . a -> List a -> List a

}

let map: (\/a, b. (a -> b) -> List a -> List b)
= /\a, b.
\f: (a->b). \xs:(List a).
case xs of
{Nil t => Nil b
; Cons t, x, xx => Cons b (f x) (map t b £ xx)
}
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1. The variable xs at the right of the case keyword is bound by \xs: (List a),
so xs will be annotated with the type List a.

2. The type of the data constructor Cons can be derived from the data type
definition of List, so all occurrences of Cons will be annotated with the type
\/a:* . a -> List a -> List a.

3. The types of t,x and xx in the right hand side of the Cons alternative can be
derived from the type of Cons, this results in the annotations: t:*, x:t and
xx : List t.

5.3.2 Specifications

Type checking a program is performed with respect to a certain specification of a
PTS. The specification data type is given below.

type Specification = (Sorts, Axioms, Rules)
type Sorts = [Sort]

type Axiom = (Sort,Sort)

type Axioms = [Axiom]

type Rule = (Sort,Sort,Sort)

type Rules = [Rule]

Below the specifications of the systems of the lambda cube are implemented.

-- lambda cube sorts
lcs :: Sorts
lcs = [Star,Box]

-- lambda cube axioms
lca :: Axioms
lca = [(Star,Box)]

—-- the rules of lambda arrow, lambda two,

-- lambda omega and the calc. of constructions
lar,12r,lor,ccr :: Rules

lar = [(Star,Star,Star)]

12r = lar ++ [(Box,Star,Star)]
lor = 12r ++ [(Box,Box,Box)]
ccr = lor ++ [(Star,Box,Box)]

-- the specification of lambda arrow, lambda two,
-- lambda omega and the calculus of constructions
la,12,l0,cc :: Specification

la = (lcs,lca,str)

12 = (1lcs,lca,12r)

lo = (lcs,lca,lor)

cc (lcs,lca,ccr)

5.3.3 Classification

An important ingredient of Barthe’s algorithm is the classification algorithm. Its
implementation is straightforward. The sets ET and ST are modelled by the types
Maybe Expr and and Maybe Sort.
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Just e
VarExpr
SortExp
AppExpr

elmt :: Specification ->
elmt sp me = ¢
Nothing -> Nothing

ase me of

-> case e of

(TVar v e) ->
r s ->
mn ->

LamExpr (TVar v e) e2 ->

Maybe Expr -> Maybe Sort

sortt sp $ Just e
plus sp $ plus sp $ Just s
mu sp (elmt sp $ Just n) (elmt sp $ Just m)
rho sp (sortt sp $ Just e)
(elmt sp $ Just e2)
plus sp $ sortt sp $ Just e
Just $ Star
Nothing
let ((Alt _ _ _ res):_) = alts in
elmt sp $ Just res

Specification -> Maybe Expr -> Maybe Sort

PiExpr _ ->
LitExpr IntType ->
LitExpr _ ->
CaseExpr _ alts _ ->

sortt ::

sortt sp me = case me of

Nothing -> Nothing

Just e -> case e of
VarExpr tv ->
SortExpr s ->
AppExpr _ _ ->
LamExpr _ _ ->
PiExpr (TVar v e) e2 ->
LitExpr (LitInt _) ->
LitExpr IntType ->
CaseExpr _ alts _ ->

minus sp $ elmt sp $ Just $ VarExpr tv
plus sp $ Just s
minus sp $ elmt sp $ Just e
minus sp $ elmt sp $ Just e
rho sp (sortt sp $ Just e)
(sortt sp $ Just e2)
Just Star
Just Box
let ((Alt _ _ _ res):_) = alts in
sortt sp $ Just res

5.3.4 The actual type checker

The actual type checker is implemented using a simple writer monad. Errors can
be written using the function addErrorMsg

type Erro
type Erro

instance
return x
f >=g

addErrorM

r
rs

Monad

sg ::

-- The Type Check Monad

String
[Error]

newtype TC t = TC (Errors,t)

TC where

TC ([,x)

TC (let TC (erf,x) =f
TC (erg,y) =gx

in (erf++erg,y))

String -> TC

addErrorMsg s = TC([s], (D)

0O

Type checking a PTS is performed with respect to a specification and a reduction re-
lation. In our language the reduction relation is fixed to S—, case-, and d-reduction.
Whether or not a term can be reduced using — or case-reduction depends only on
the term itself. Whether or not a term can be reduced using d—reduction depends
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also on the definitions in the rest of the program. Therefore both the specification of
a PTS and the delta rules of the program at hand should be available to a function
that performs type checking.

We introduce the type TypeCheck a b for functions that perform type checking. A
function of type TypeCheck a b takes as arguments a specification, a list of delta
rules and an object of type a that should be type checked, the output of the function
is of type TC b. If a is Expr than the function returns the type of the expression
argument, so in that case b is also Expr. Otherwise b is equal to (). In both cases
error messages are side effected using the TC monad.

-- TypeCheck Type
type TypeCheck a b = Specification -> DeltaRules -> a -> TC b

Type checking a program consists of type checking the data types and definitions.

-- Program

program :: TypeCheck Program ()

program dr sp (Program tds vds) = do{tds <- mapM (tDecl dr sp) tds
;vds <- mapM (vDecl dr sp) vds
;return ()}

Type checking data type definitions consists of checking whether the given types of
the type- and data constructors are correct. Furthermore, it is checked whether the
type- and data constructors are of the form of definition 3.2.

-- Data Type Declaratiomns
tDecl :: TypeCheck TDecl ()
tDecl dr sp td@(TDecl tv tvs)
= do{mapM (\(TVar _ t) -> expr dr sp t) (tv:tvs)
;isOfRightForm dr sp td
;return ()}

isOfRightForm :: TypeCheck TDecl ()

Type checking a definition consists of checking whether the derived type and the
given type of the defined expression are equal.

-- Value Declarations
vDecl :: DeltaRules -> Specification -> VDecl -> TC ()
vDecl dr sp (VDecl tv@(TVar _ tv_type) ex)
= do {ex_type <- expr dr sp ex
;if
not $ equal tv_type ex_type
then
do{addErrorMsg $ bindMsg tv tv_type ex ex_type
;return $ O}
else
return ()

29



The expr function type checks expressions and returns their type. expr pattern
matches against the structure of the expression and calls the appropriate check
function.

expr :: TypeCheck Expr Expr

expr dr sp ex = case ex of

SortExpr _ -> sortExpr dr sp ex -- (SORT)
VarExpr _ -> varExpr dr sp ex -- (VAR)
PiExpr _ _ -> piExpr dr sp ex -- (PI)
LamExpr _ _ -> lamExpr dr sp ex -- (LAM)
AppExpr _ _ -> appExpr dr sp ex -- (APP)
CaseExpr _ _ _ -> caseExpr dr sp ex -- (CASE)
LitExpr _ -> 1litExpr dr sp ex -- (LIT)
Unknown -> return Unknown

The (PI) and (APP) rules of definition 4.7 contain the relation :—,,, this relation
is modelled by the exprwh function. The reduce_to_whnf function reduces a term
to its weak head normal form . (see section 5.2)

exprwh :: TypeCheck Expr Expr
exprwh dr sp ex =
do{ex <- expr dr sp ex

;return $ reduce_to_whnf dr ex}

The sortExpr function follows closely the structure of the (axiom) rule. If there is
no axiom for the sort an error message will be returned.

sortExpr :: TypeCheck Expr Expr
sortExpr _ (_,a,_) (SortExpr sl)
= case lookup sl a of
Just s2 -> do{return $ SortExpr s2}
Nothing -> do{addErrorMsg $ noAxiomMsg sl
;return Unknown}

Because every variable is annotated with its type, the varExpr function simply
returns the annotated type.

varExpr :: DeltaRules -> Specification -> Expr -> TC Expr
varExpr _ _ (VarExpr (TVar _ ex)) = return ex

The piExpr function closely follows the structure of the (PI) rule. Given an expres-
sion of the form PiExpr (TVar v a) b, the function will first check whether the
type of a is a sort, if this is the case the sort is stored in s1. Then the type of b is
derived and reduced to weak head normal form. It is checked whether the reduced
type of b is a sort, if this is the case it is stored in s2. Finally, it is checked whether
there is a rule of the form (s1,s2,s3) in the rules of the current PTS. If this is the
case, the type of the expression, SortExpr s3, is returned.

piExpr :: DeltaRules -> Specification -> Expr -> TC Expr
piExpr dr sp@(_,_,r) piExpr@(PiExpr (TVar v a) b)
= do{maybe_s1 <- return $ sortt sp (Just a)
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;case maybe_sl1 of
Nothing -> do{addErrorMsg $ noSortAMsg piExpr
;return Unknown}
Just s1 ->
do{btype <- exprwh dr sp b
;case btype of
SortExpr s2 ->
do{case lookup’ (s1,s2) r of
Nothing -> do{addErrorMsg $
ruleMsg piExpr sl s2
;return Unknown}
Just (_,_,s3) -> return $ SortExpr s3

}
_ -> do{addErrorMsg $ noSortBMsg piExpr btype
;return Unknown}
}
}
lookup’ :: (Eq a , Eq b) => (a,b) -> [(a,b,c)] -> Maybe (a,b,c)

The lamExpr function closely follows the structure of the (LAM) rule. Given an
expression of the form LamExpr (TVar x a) m, the function will derive the type of
m and check whether the side condition of the (LAM) rule holds.

lamExpr :: TypeCheck Expr Expr
lamExpr dr sp ex@(LamExpr tv@(TVar x a) m)
= do{b <- expr dr sp m
;case rho sp (sortt sp $ Just a) (elmt sp $ Just m) of
Just _ -> return $ PiExpr tv b

Nothing -> do{addErrorMsg $ lamMsg ex
;return Unknown}

The function appExpr closely follows the structure of the (APP) rule. First, the
types of £ and c are deduced and stored in f_type and a. Then, it is checked
whether f_type is of the form PiExpr (TVar x a’) b. If this is the case a and a’
are reduced to normal form. Finally, if the normal forms of a and a’ are equal the
type b with x substituted for c is returned.

-- (APP)

appExpr :: TypeCheck Expr Expr
appExpr dr sp (AppExpr f c)

= do{f_type <- exprwh dr sp f

;a <- expr dr sp c
;if

(not (isPi f_type))
then

do{addErrorMsg $ appMsg2 f f_type c a
;return  Unknown}
else
let
(PiExpr tv@(TVar x a’) b)=f_type
in
do{a <- return $ reduce_to_nf dr a
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;a’ <- return $ reduce_to_nf dr a’
;if
not (equal a a’)
then
do{addErrorMsg $ appMsgl f f_type c a a’
;return Unknown}
else
do{return $ applySSubst (Sub tv c) b}
}

The caseExpr function closely follows the structure of the (CASE) rule. Given a
case expression of the form CaseExpr ex alts Unknown, (the Unknown argument
tells us that the case expression is not explicitly typed as in example 3.4) first the
type of the scrutinized expression ex is stored in ex_type. From this type the
type constructor and its actual arguments are derived and stored in tc and atcas.
(For instance if xs equals Cons Int 1 (Nil Int) then tc will equal List and
atcas will equal Int.) Then, for every alternative the type of the result expression,
with the type constructor arguments substituted with the actual type constructor
arguments, is derived. If all these types are equal the common type is returned, if
not the Unknown type is returned and an error message is side effected.

If the case expression is explicitly typed (as in example 3.4) we just return the type.

-- (CASE)
caseExpr :: TypeCheck Expr Expr
caseExpr dr sp ce@(CaseExpr ex alts Unknown) =

do{ex_type <- expr dr sp ex
;te <- return $ leftMost ex_type
;atcas <- return $ ex_atcas ex_type

do{subst <- return $ zipWith Sub tcas atcas
;res <- return $ applySubst subst res
;expr dr sp res}) alts
;ct <- return $ foldrl (\tl1l t2 -> if t1==t2 then tl1 else Unknown) rt
;if
ct==Unknown
then
do{addErrorMsg $ caseMsg ce
;return ct}

;rest <- mapM (\(Alt _ tcas _ res)->

else
return ct
}
caseExpr _ _ (CaseExpr _ _ t) = return t

The implementation of the rules for the integers is trivial.

-- (LIT)

litExpr :: TypeCheck Expr Expr

litExpr _ _ (LitExpr 1lit)

= case lit of
LitInt _ -> do{return $ LitExpr IntTypel}
IntType -> do{return $ SortExpr Star}
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Chapter 6

Conclusion

We have presented a functional programming language based on PTSs. We have
shown how we can define the language by extending the PTS framework with alge-
braic data types, case expressions and definitions.

Unlike the description of the Henk language in [12] we have given a complete formal
definition of the type system and the operational semantics of our language. Another
difference between Henk and our language is that our language is defined for a large
class of Pure Type Systems, and not only for the systems of the A-cube.

To be able to experiment with our language we have developed a type checker and
an interpreter. The basic ideas behind the interpreter and the type checker are
described in the thesis.

We have illustrated that the type system of our language is more powerful than
the Hindley-Milner system by showing that a number of meaningful programs that
cannot be typed in Haskell can be typed in our language. A real world example of
such a program is the mapping of a specialisation of a Generic Haskell function to
a Henk program.

We have shown that PTSs are at the top of an hierarchy of increasingly stronger
type systems. In functional programming languages based on the systems of this
hierarchy the concepts of ‘existential types’, ‘rank-n polymorphism’ and ‘dependent
types’ arise naturally. There is no need for ad-hoc extensions to incorporate these
features.

Unfortunately PTSs need (at least) explicit typing to have a decidable type checking
problem. Because of this reason it is difficult to use our language as a source
programming language, it would place a heavy burden on a programmer to explicitly
type every A or II abstraction, and to explicitly give the types at which polymorphic
functions should be instantiated.

Therefore, a topic for further research would be how to mix the Hindley-Milner and
PTS typing system in one language. This would allow the user to write implicitly
typed code when (s)he does not need the strength of PTSs, and to write explicitly
typed code for the more advanced components of his/her program.

Another topic of interest is the question exactly how much of the source code should
be explicitly typed to keep type checking decidable. A lower bound for such an effort
is set in [18] where it is shown that type checking is undecidable for a variant of Aw
in which types can be omitted but a ‘marker’ must be left where a type has been
omitted.
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