
 
 
 
 

Building a High Performance Cluster through 
Computer Reuse 

 
 
 

A Major Qualifying Project Report submitted to the Faculty of the 
Worcester Polytechnic Institute in Partial Fulfillment of the Requirements 

for the Degree of Bachelor of Science 
 
 
 

By 
 
 
 
 

     
Christopher T Clark 

 
 
 

Submitted On:  26 October, 2010 
 

Submitted To: 
 
 
 

         
Professor Xinming Huang, Advisor, Electrical and Computer Engineering 

 
 

       
Professor Erkan Tüzel, Advisor, Physics 

 
 
 
 
 

 



ii | P a g e  
 

Abstract 

The goal of this MQP was to use ³outdated´ commodity PCs to build a cluster 

computer capable of being used for computationally intensive research. Traditionally, 

PCs are recycled after being taken out of use during a refresh cycle. By using open source 

software and minimal hardware modifications these PCs can be configured into a cluster 

that approaches the performance of state-of-the-art cluster computers. In this paper, we 

present the system setup, configuration, and validation of the WOPPR cluster computer. 

 

 

 

 



iii | P a g e  
 

Acknowledgments 
 

The Author would like to thank the following people: 

 Professors Erkan Tüzel and Xinming Huang, for their continual guidance and 

advice in their respective roles as the PHY and ECE department advisors for this project. 

Robert Lowry and Paul Vasiliadis for their work on the design and fabrication of 

the rack enclosure and for their contributions to Chapter 4 of this project. 

The WPI Computing and Communications Center and the High Performance 

Computing Group for their support and assistance in gathering all of the initial 

components for the cluster. 

 



iv | P a g e  
 

Table of Contents 
Abstract ............................................................................................................................... ii 
Acknowledgments.............................................................................................................. iii 
Table of Contents ............................................................................................................... iv 
Table of Figures ................................................................................................................. vi 
Table of Equations ............................................................................................................ vii 
Executive Summary ............................................................................................................ 1 
Chapter 1: Introduction ....................................................................................................... 4 
Chapter 2: Computer Refresh, Reuse, and Recycling......................................................... 7 

2.1 WPI Recycling and Reuse ...................................................................................... 10 
Chapter 3: Energy Cost Analysis for Cluster Computers ................................................. 11 

3.1 Systems Used for Comparison ................................................................................ 11 
3.2 Power Data .............................................................................................................. 12 
3.3 Total Cost Comparison ........................................................................................... 14 
3.4 Conclusions ............................................................................................................. 15 

Chapter 4: Building the WOPPR Cluster with Used Computers ...................................... 17 
4.1 Cluster Computer Architecture ............................................................................... 17 
4.2 WOPPR Cluster Design .......................................................................................... 20 

Chapter 5: Software Descriptions and Installation ........................................................... 32 
5.1 Rocks and Rolls ...................................................................................................... 32 

5.1.1 Rocks v5.3........................................................................................................ 32 

5.1.2 Rocks OS Installation ...................................................................................... 36 

5.1.3 Cluster Node Installation ................................................................................. 47 

5.1.4 Ganglia ............................................................................................................. 54 

5.1.5 Sun Grid Engine ............................................................................................... 56 

5.1.6 Area51 .............................................................................................................. 59 

5.1.7 HPC .................................................................................................................. 61 

5.1.8 Programming Languages ................................................................................. 62 

5.2 GotoBLAS2 ............................................................................................................ 62 
5.2.1 GotoBLAS2 Installation .................................................................................. 62 

5.3 HPL ......................................................................................................................... 63 
5.3.1 HPL Installation ............................................................................................... 64 

5.4 Real World Application ± The Gliding Assay Code .............................................. 66 
5.5 Intel Math Kernel Library Installation .................................................................... 68 

Chapter 6: Testing and Benchmark Results ...................................................................... 70 
6.1 HPL Configuration.................................................................................................. 70 

6.1.1 HPL Machinefile .............................................................................................. 77 

6.2 Gliding Assay Code ................................................................................................ 77 
6.3 WOPPR Cluster Testing and Results (full 10 nodes) ............................................. 80 

6.3.1 WOPPR Cluster, First Tests ............................................................................ 82 

6.3.3 Original Cluster, Parameter Tuning ................................................................. 83 



v | P a g e  
 

6.3.4 WOPPR Cluster Results (10 nodes) ................................................................ 86 

6.4 WOPPR 8-node Testing for Comparison with Apple Xserve ................................ 87 
6.4.1 WOPPR Determining the Effect of Matrix Size .............................................. 88 

6.4.2 WOPPR Parameter Tuning .............................................................................. 89 

6.4.3 WOPPR Assay Testing .................................................................................... 91 

6.4.4 WOPPR Testing Results .................................................................................. 93 

6.5 Apple Xserve Testing and Results .......................................................................... 94 
6.5.1 Xserve - Determining the Effect of Matrix Size .............................................. 95 

6.5.2 Xserve Parameter Tuning ................................................................................ 96 

6.5.3 Xserve Assay Testing .................................................................................... 102 

6.5.4 Xserve Results Summary ............................................................................... 102 

6.6 Conclusion ........................................................................................................ 103 

Chapter 7: Conclusion and Recommendations ............................................................... 105 
References ....................................................................................................................... 108 
APPENDIX ..................................................................................................................... 110 

APPENDIX A: Computer Specifications ................................................................... 110 
APPENDIX B: Extend-Compute.xml File ................................................................. 111 
APPENDIX C: SMC EZNET-16SW Network Switch .............................................. 113 
APPENDIX D: Tripp-Lite Rackmount Surge Suppressor, Model IBAR12-20ULTRA
..................................................................................................................................... 115 
APPENDIX  E: HPL Make File Configuration .......................................................... 116 

 
  



vi | P a g e  
 

Table of Figures 
Figure 1 The WOPPR cluster. ............................................................................................ 6 
Figure 2 Total cost of ownership based on the PC life cycle with three cost variables [4]. 7 
Figure 3 Cost comparison based on initial cost of clusters and the projected average 
energy usage by month. .................................................................................................... 15 
Figure 4 Rack enclosure.................................................................................................... 22 
Figure 5 Picture of drawer slide. ....................................................................................... 24 
Figure 6: Image of the drawer-rack. ................................................................................. 25 
Figure 7: Image of back of computer - black plastic. ....................................................... 26 
Figure 8: Image of gasket and nuts. .................................................................................. 27 
Figure 9: Image of angle bracket. ..................................................................................... 27 
Figure 10: Image of PSU bracket...................................................................................... 28 
Figure 11: Image of a completed blade............................................................................. 29 
Figure 12: Image of power breakout board. ...................................................................... 30 
Figure 13 Frontend and compute node setup. ................................................................... 35 
Figure 14 Rocks installation splash screen. ...................................................................... 37 
Figure 15 Rocks installation TCP/IP configuration. ......................................................... 38 
Figure 16 TCP/IP configuration selections. ...................................................................... 38 
Figure 17 TCP/IP configuration data entry. ...................................................................... 39 
Figure 18 Rocks Roll selection screen. ............................................................................. 39 
Figure 19 Rocks Roll selection, screen 2. ......................................................................... 40 
Figure 20 Rocks Roll selection, screen 3. ......................................................................... 41 
Figure 21 Rocks cluster information screen ..................................................................... 41 
Figure 22 Example Ethernet configuration for eth0. ........................................................ 42 
Figure 23 Example eth1 configuration screen. ................................................................. 43 
Figure 24 Example gateway/DNS configuration. ............................................................. 44 
Figure 25 Partitioning selection screen. ............................................................................ 45 
Figure 26 Manual partitioning example screen. ............................................................... 46 
Figure 27 Appliance selection screen. .............................................................................. 48 
Figure 28 Insert-Ethers screen. ......................................................................................... 49 
Figure 29 Insert-Ethers recognizes MAC address. ........................................................... 50 
Figure 30 Insert-Ethers assigns the node name................................................................. 50 
Figure 31 Insert-Ethers, node Kickstart request successful. ............................................. 51 
Figure 32 Ganglia node physical view.............................................................................. 54 
Figure 33 Ganglia frontend for cluster. ............................................................................. 55 
Figure 34 QMON main control panel. .............................................................................. 57 
Figure 35 QMON cluster queues page. ............................................................................. 57 
Figure 36 QMON job control screen. ............................................................................... 58 
Figure 37 Main cluster webpage. ...................................................................................... 59 
Figure 38 Tripwire Reports page. ..................................................................................... 60 
Figure 39 Compilers installed on the WOPPR. ................................................................ 62 
Figure 40 GotoBLAS2 build Information......................................................................... 63 
Figure 41 HPL Make file configuration (affected lines). ................................................. 65 
Figure 42 Microtubule simulation snapshot. .................................................................... 67 
Figure 43 Microtubule image............................................................................................ 67 
Figure 44 HPL Output data key. ....................................................................................... 81 



vii | P a g e  
 

Figure 45 Original cluster, phase 1, test 1. ....................................................................... 82 
Figure 46 Original cluster, multiple N, NB=128, 2x5 matrix. .......................................... 83 
Figure 47 Original cluster, multiple NB, N=46336, 2x5 .................................................. 84 
Figure 48 Original cluster, multiple NB, N=46336, 3x3 .................................................. 84 
Figure 49 Original cluster, 4x5 matrix using Hyperthreading .......................................... 86 
Figure 50 WOPPR determining the effect of N size......................................................... 88 
Figure 51 WOPPR determining the optimum NB value. ................................................. 89 
Figure 52 WOPPR parameter tuning. ............................................................................... 90 
Figure 53 WOPPR Assay run, 8 nodes, no motor writing. ............................................... 91 
Figure 54 WOPPR Assay comparison with and without motor writing. .......................... 92 
Figure 55 WOPPR Assay comparison with two threads/core. ......................................... 93 
Figure 56 Apple Xserve Gflops for 2x4 matrix. ............................................................... 96 
Figure 57 Apple Xserve tuning, NBMIN effect, N=5000. ............................................... 97 
Figure 58 Apple Xserve tuning, NBMIN effect, N=10000 .............................................. 98 
Figure 59 Apple Xserve tuning, NBMIN effect is damped. ............................................. 98 
Figure 60 Apple Xserve performance by matrix configuration. ....................................... 99 
Figure 61 Apple Xserve 16-thread performance by matrix configuration. .................... 101 
Figure 62 Apple Xserve Assay testing results. ............................................................... 102 
Figure 63 Registered Rocks Cluster Sizes ...................................................................... 107 

 

 

Table of Equations 
 
Equation 1 Matrix Size (N) ............................................................................................... 72 
Equation 2 Theoretical Peak Performance ........................................................................ 80 
Equation 3 WOPPR Theoretical Peak for Single Node .................................................... 80 
Equation 4 WOPPR Theoretical Peak for 10 Nodes ........................................................ 80 
Equation 5 Computer Efficiency ...................................................................................... 82 
Equation 6 WOPPR Single Node Computer Efficiency ................................................... 83 



1 | P a g e  
 

Executive Summary 

The purpose of this project was to use µoutdated¶ commodit\ PCs to build a 

cluster computer capable of being used for computationally intensive research. Professor 

Tüzel of the Physics Department had the need of a cluster computer capable of running 

multiple processes simultaneously to run gliding microtubule assay simulations. He 

brought about the idea of using some of the older computer equipment scheduled for 

recycling to build a cluster computer.  

With the growing number of PCs and other electronics steadily filling landfill 

areas, any opportunity to prolong the lifecycle of these components should be taken. WPI 

operates on a rough 3- 5 year refresh cycle of their computer components. This provided 

an opportunity to take a group of 4 year old PCs to use in this project.  

The first step in deciding the feasibility of using these computers was to do an 

energy cost comparison with several comparable computers from mainstream suppliers. 

After balancing the configurations to get the most even comparison, the older 

components were tested and compared to the state-of-the-art computers. After collecting 

data and factoring in the initial cost of the new equipment, it was seen that even though 

the electrical cost of the reuse cluster was higher on a month-to-month basis, the reuse 

cluster still managed to be the cheaper alternative within the 3-to-5 year refresh cycle. 

The WOPPR cluster was built using 10 old Dell GX620 computers for the nodes, 

and an 11th for the frontend. For space considerations, an old Compaq server rack was 

gutted and modified to hold a rack made up of the 10 motherboards and power supplies in 

a vertical configuration. There is room to expand the cluster in the Compaq rack by 

adding additional drawer configurations. The rack could hold as many as 40 computers of 



2 | P a g e  
 

the same motherboard form factor. Airflow testing and temperature monitoring were 

conducted to ensure that the rack design was adequate for the cooling of the cluster. 

Rocks Cluster software was chosen as the operating system for the cluster. This 

open source software is designed to ensure that customized distributions for individual 

nodes of the cluster could be automatically maintained. The software accomplishes this 

by making the complete OS installation on a node the default management tool. The 

Rocks software is a specialized Linux distribution designed from Red Hat Linux 5.1. 

Third party rolls have been added to add functionality to the system for security, message 

passing, administration, job control and scheduling, and various other functions.  

The project documents the detailed setup and configuration of the software. This 

includes the Rocks software and additional rolls as well as the software installed for 

testing purposes. The software for testing consisted of HPL which is a portable 

implementation of the popular Linpack benchmarks and is used to benchmark the Top 

500 Supercomputers of the world.  

The testing performed on the WOPPR consisted of 3 parts. The first being a full 

complement of tests on the entire 10 node cluster using HPL. The second part was 

completed after replacing the frontend computer for the cluster. This part concentrated on 

testing only 8 of the nodes in order to compare to the 8 core testing of the Apple Xserve 

machine. The third part of the testing involved a real world application written by 

Professor Tüzel for gliding microtubule assay simulation. 

HPL and Assay testing was completed on an Apple Xserve computer for 

comparison. The HPL testing showed that this type of cluster is comparable to the newer 

processors and architecture used by the Apple Xserve. The efficiency is lower but is 



3 | P a g e  
 

dependent on variations in tuning and environment differences such as the Linear 

Algebra system used and the version of MPI used. The results of the Assay testing clearly 

showed that for single thread operations of the WOPPR cluster it is superior to the 

Xserve. However, when using hyperthreading to run two processes per core, the WOPPR 

was a distant second to the Xserve performance.  

The project proved that using recycled computers to build this type of cluster is a 

viable option for the older equipment depending on what type of programming needs to 

be run. Multiple instances of single - process, distributed - memory programming would 

use the cluster to its full potential. Based on the results of this project, we recommend the 

following: 

x From a cost savings perspective, we recommend building a Rocks cluster 

from ³outdated´ computers being rec\cled as opposed to bu\ing a new 

cluster computer. The cost savings is realized in the equipment as well as 

the open source software used for the cluster. 

x From an applications perspective, we recommend this type of cluster for 

any computational research where the programming is to be developed as 

part of the research. This type of low cost cluster is well suited to research 

and development environments. 

x From the recycling perspective, this cluster configuration is highly 

recommended for its flexibility. Rocks allows non-heterogeneous mixtures 

of computer equipment to be added to a single cluster and provides the 

tools, such as Sun Grid Engine, to take advantage of the different groups 

of computers added.  



4 | P a g e  
 

Chapter 1: Introduction 

 This project explores the use of outdated computer components to build a cluster 

computer that is capable of efficiently running parallel and serial jobs for any 

computational research. The concept of cluster computing has been around since the 

1950¶s with the SAGE cluster built for NORAD under an Air Force contract with IBM. 

Later technological advancements continued to contribute to the idea and in the late 

1980¶s there were some notable uses of clusters such as a computational cluster of 160 

workstations used by the NSA[1].  In 1994, the first Beowulf commodity type cluster was 

developed and built at NASA¶s Goddard Space Flight Center using 16 100MH] Intel 

80486 based PCs connected by 10-Mbps Ethernet LAN[2].  The use of commodity 

cluster computers for computational research has continued to grow since then and many 

of the Top 500 computers today are some form of cluster design[3]. Commodity clusters 

are normally built of a homogeneous group of computers or nodes and can be configured 

in several different architectural methods such as high availability clusters, high 

performance clusters, load balancing cluster, and more.  

The concept of ³outdated computers´ is typically defined by the standard 

government or corporate refresh cycle of 3 to 5 years. As computers are cycled out of 

use, they are subject to re-purposing, recycling, or disposal. As more and more computer 

equipment is being cycled out of use and slated for possible disposal, it is growing ever 

more important to find alternative uses for them.  

Even with the growing popularity of commodity cluster computing, the actual use 

of clusters has stayed mainly within the realm of academia and enthusiasts. This could be 

contributed to the steep learning curve required in order to configure, administer, and 



5 | P a g e  
 

maintain a cluster computing environment. The Rocks Group of the University of 

California has been working on a specialized Linux distribution designed for the use on 

cluster computer since May 2000, with the underlying concept of making it easier to 

deploy, manage, scale, and upgrade clusters.  

For this project, the Rocks software was chosen as the Operating System. The 

components for the cluster itself were obtained from a large batch of computers that WPI 

had removed from the campus labs and common areas and had determined to have no 

further value and scheduled for recycling.  

This project will focus on the feasibility of reusing outdated computers at WPI to 

form a cluster computer, named WOPPR, for use in research applications which are 

computationally intensive. This idea was originally presented by a new faculty member, 

Professor Erkan Tüzel from the Department of Physics. Professor Tüzel brought his 

research in coarse-pained modeling of complex fluids and living cells to WPI in 2009. As 

part of his research, he frequently needs the use of distributed-memory, multiple-

processor computing resources. He had an idea to reuse the computer resources that were 

periodically being cycled out of use from his own department, as well as those from the 

entire campus. 

This project encompassed the assembly, configuration, tuning, benchmarking, and 

evaluation using programming involved in research on the dynamics of biopolymers and 

their interactions with molecular motors. The testing of the cluster is accomplished with 

industry standard benchmarks and methodology for determining maximum performance. 

Other factors included in the test plan were power consumption data and thermal loading 



6 | P a g e  
 

characteristics. For comparison, a top of the line Apple Xserve was included in the testing 

as well as a dual Xeon server built on-site. 

This report discusses the details of this project through conception, construction, 

testing, and evaluation. 

 
     Figure 1 The WOPPR cluster. 



7 | P a g e  
 

Chapter 2: Computer Refresh, Reuse, and Recycling 

All organizations that have large quantities of PCs must grapple with the reality of 

periodically refreshing their equipment. IT departments are consistently tasked with 

reducing costs and one of the major ways to influence their costs is the PC refresh cycle 

an organization chooses to use. While some organizations try to push out their pc 

acquisitions in an attempt to reduce their present budget, the overall cost tends to increase 

over time after a certain point is reached in the life cycle of computers. This increase is 

due to items such as IT Help Desk Support, patch support, out-of-warranty repairs, onsite 

support, and others. In a study presented by Intel Corporation in 2004 the Total Cost of 

Ownership (TCO) was shown to increase after 3 years as in Figure 2.  

 

 
   Figure 2 Total cost of ownership based on the PC life cycle with three cost variables [4]. 



8 | P a g e  
 

The two main categories of disposition for old computer equipment are disposal 

and recycling. Recycling normally consists of several options including the reuse of 

components, and the stripping and segregating of materials for physical recycling and 

materials reclamation. In June of 2008 the number of installed PCs worldwide was 

estimated at over 1 billion with a projected increase of 12% per year. This would put the 

total installed base of personal computers over 2 billion by 2014[5]. The installed base is 

the number of personal computers in use as opposed to the number of computers shipped. 

With worldwide PC shipments of over 306 million in 2009, and more than 166 million in 

the first half of 2010, there is a greater than 30% potential annual addition to the installed 

base [6]. The difference between the increment of installed base and the units shipped 

being the amount of computers that are taken out of service. This leaves approximately 

200 million computers worldwide being disposed of through recycling in the next year. In 

2007 there were approximately 99,000 tons of computers collected for recycling with 

another 441,000 tons of computers making their way into landfills [7].  

In addition to the raw material waste, there are large amounts of hazardous 

materials such as lead, cadmium, and mercury which are released by these discarded 

computers, which are harmful to the environment [8].  

One major factor which contributes to the low reuse rate of computers, aside from 

the corporate refresh cycle mentioned earlier, is the Moore¶s law, which states that the 

number of transistors on a chip doubles about every two years[9]. With the increases in 

computing power available the software application design follows suit and pushes the 

boundaries of performance available.  That being said, there is still a use for outdated 

components. Computers that may not be useful in applications requiring cutting edge 



9 | P a g e  
 

technology and bleeding-edge speed may still be useful for other purposes. A computer 

that has a processor 4 to 5 years old is still well enough equipped for web browsing, word 

processing, and other basic computing tasks and when configured correctly these could 

be used in cluster computers. 

 For a company or other large business entity such as a school or other 

organization which has large numbers of computers being cycled out of use, the cost of 

recycling can be high. Most states in the U.S. have enacted bans preventing the disposal 

of CRT monitors and electronics equipment in landfills. This limits the disposal options 

for the components to some form of recycling. This could be manufacturer take-back 

programs, reuse programs, donations, stripping and segregation of components for 

physical hazardous waste recycling or disposal, or in some cases just maintaining the 

items in storage (although this last is only a delaying tactic, not a solution). 

 Some manufacturers and retailers offer recycling and reuse programs. Dell, HP, 

Intel, LG, Motorola, AT&T, and Best Buy are just a few of the larger companies that 

offer comprehensive programs to take back consumer electronics, computers, cell 

phones, and CRTs for recycling and reuse programs[10].  

 

  



10 | P a g e  
 

2.1 WPI Recycling and Reuse 

There are three main entities within WPI that handle the majority of the 

purchasing, disposition, and recycling of computer components. The three Departments 

are the Computing and Communications Center (CCC), Electrical and Computer 

Engineering Department (ECE), and Computer Science Department (CS). CCC manages 

approximately 85% of the general PC assets on campus while the ECE (with the 

exception of one research lab) and CS Departments manage the purchasing and 

disposition of PC assets for their own respective departments.  

CCC Assets 

The PC assets that are managed by the CCC are tracked annually for turnover. 

There is a rough 3 year cycle that is monitored for groups of computers with the high 

demand areas such as labs taking priority over lower demand areas such as lounges and 

common area computing. This tracking allows CCC to plan for whole area turnover as a 

group of computers age.  

When a group of computers are cycled out of use in an area they are delivered to 

CCC for disposition. Computers that are functional and evaluated to still be of use at 

WPI¶s present level of software are cleaned and refreshed and then reused in one of the 

many non-primary roles around campus. Computers that are evaluated as being 

functional but too limited at WPI¶s present level of software are cleaned and wiped 

before being scheduled for project or community donations. The computers that are 

physically damaged and unusable are sent to the Facilities Department for physical 

recycling. 

 



11 | P a g e  
 

Chapter 3: Energy Cost Analysis for Cluster Computers 

 One of the aspects used to determine the feasibility of building a cluster of 

³retired´ computers involves an energy consumption comparison with newer state-of-the-

art cluster computers. This comparison is performed to calculate the relative expense 

involved in using the older hardware compared to the newer and more energy efficient 

components used in the new cluster computers. The two state-of-the-art computers being 

compared to the WOPPR cluster are the Apple Xserve and the Dell Poweredge R610.  

 

3.1 Systems Used for Comparison 

 
1. Computer Reuse Cluster (WOPPR)  

The reuse cluster configuration used for comparison is composed of GX620 small 

form factor motherboards, their associated power supplies, hard drives, and fans. 

The general specifications are listed in Table 1. The Pentium 4¶s used for 

comparison are 3.4GHz processors with an 800MHz bus speed and a 2048K L2 

cache. The cluster has 10 nodes with the same configuration but for comparison 

purposes, only 8 nodes are used. 

Table 1 General Specification for GX620 Computer 

x Pentium 4 640 Prescott Processor, 3.4GHz 
x 220W Power Supply 
x 2GB of 533MHz SDRAM 
x Hard Drives,80G,S2,7.2K,9G 3.5,WD-UNIC 



12 | P a g e  
 

2. Apple Xserve 

The Apple Xserve configuration is shown in Table 2. 

Table 2 General Specifications for Apple Xserve Computer 

x Two 2.93GHz Quad-Core Intel Xeon X5570 (Quad Core) 
x 3GB (3x1GB) 
x 160GB Serial ATA ADM @ 7200-rpm 
x 8x SuperDrive DL (DVD±R DL/DVD±RW/CD-RW) 
x NVIDIA GeForce GT 120 256MB Graphic Card 
x Single 750W Power Supply 

 
3. Dell PowerEdge R610 

The Dell PowerEdge R610 configuration is shown in Table 3. The Dell R610 uses 

the same processor as the Apple server.  

Table 3 General Specifications for Dell PowerEdge R610 Computer 

x Two Intel® Xeon® X5570(Quad Core), 2.93Ghz, 8M 
Cache,Turbo, HT, 1333MHz Max Mem 

x 4GB Memory (4x1GB), 1066MHz Single Ranked UDIMMs for 
2 Processors, Adv ECC 

x No Operating System 
x 73GB 10K RPM Serial-Attach SCSI 2.5" Hot Plug Hard Drive 
x High Output Power Supply, Redundant, 717W 

 

3.2 Power Data 

1. Reuse cluster Load testing was completed on several nodes. The power usage is 

shown in Table 5.  Also noted, the highest peak instantaneous amperage is 

1.17A. By using the highest value (peak) we can calculate the (worst case) 

maximum power usage for the cluster, shown in Table 4.  

  



13 | P a g e  
 

   Table 4 Maximum Reuse Cluster Power Usage 
Peak current during 100% load = 1.17A 

Line voltage = 114.8VAC 

Power usage per node = 134.3watts 

Cluster power usage = 1075watts 

 
 

      Table 5 Average Current of Reuse Cluster nodes 

Usage Min 
[Amps] 

Max 
[Amps] 

off, unplugged 0 0 
off, plugged in 0.03 0.06 
booting 0.58 0.98 
idling 0.49 n/a 
100% CPU 1.01 1.09 

 
 

2. Apple Xserve power consumption benchmark data was provided by running 

SPECpower_ssj�2008[11] and is shown below in Table 6. The cost for the 

system using this configuration is $5,444 on 4/28/2010. 

   Table 6 Apple Xserve Power 
Load Power 
Idle 173W 
100% Full Load 334W 

 
3. Dell does not publish their power data so a 50% capacity on the 717W power 

supply at 115V was used for comparison, see Table 7.  The cost for the system 

as of 1/26/2010 is $4,930 (not including an operating system). 

 
      Table 7 Dell PowerEdge R610 Power 

Load Power 
100% Full Load (estimated) 359 W 

 
  



14 | P a g e  
 

3.3 Total Cost Comparison 

     Table 8 Full Load Values 
Reuse Cluster     1075W 
Xserve       334W 
R610       359W 

 
Table 8 summarizes the power consumption of these three computers. The Reuse 

Cluster will use 321% more power than the Apple Xserve and 300% more power than the 

Dell R610. However, this is not the sole factor in the energy comparison as the actual 

cost of the clusters in operation over time must be taken into consideration as well as the 

purchase price.  

 

The following assumptions are taken in order to perform the comparison: 

1. 80% average operation, 24 hrs a day, 365 days a year. 

2. Electricity cost of 14.17 cents/kwh[12].  

3. The cost of the Dell and Apple clusters is an unrecoverable expense taken at 

time (0). 

4. The cost of the recycled computers is negligible since they are retired from 

WPI lab use. 

 

The total cost, including the new equipment procurement cost, and the energy 

consumption cost, is compared in Figure 3. 



15 | P a g e  
 

 
Figure 3 Cost comparison based on initial cost of clusters and the projected average energy usage by month. 

 

3.4 Conclusions 

Based on a set of assumptions and projected average energy use, we can see that 

the Reuse Cluster is more cost effective than the Dell and the Apple Xserve within a 

normal 36-48 month refresh cycle. After approximately 85 months (not shown), the better 

energy efficiency of the Dell and Apple clusters would start to outweigh the lack of initial 

cost involved in the Reuse Cluster. But, with the refresh cycle happening every 36 to 48 

months, newer and more powerful and energy efficient computers will be added to the 

cluster, replacing the older less efficient PCs in the process. This reduction in energy 

usage coupled with increased performance would have the effect of periodically causing 

an inflection point in the Reuse Cluster graph followed by a reduced slope. This in turn 

would move the convergence points with the Dell and Apple machines farther out. 

There are some possible disadvantages to using reuse computers for a cluster.  

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Co
st

 (D
ol

la
rs

)

Months

Cost Comparison

Reuse Cluster

Dell

Apple



16 | P a g e  
 

x Space considerations. New server nodes come standard with dual quad-

core processors or the newest dual hexacore servers. This allows you to 

buy one server node with either 8 or 12 cores instead of putting together 

multiple older PCs.  

x Setup and maintenance costs. With a new server, there is often service 

contract and setup assistance from the vendor. With an older reuse cluster, 

the responsibility of setup and maintenance rests solely on your IT staff.  

x Software programming and maintenance. With this reuse cluster we chose 

to use an open source solution for the OS and support programs. This does 

require a more hands-on approach than getting the newest Windows or 

Apples software installed.  

  



17 | P a g e  
 

Chapter 4: Building the WOPPR Cluster with Used 

Computers 

4.1 Cluster Computer Architecture 

Cluster computing is not a new area of computing. Since the 1950¶s there has 

been an interest in cluster computing and a corresponding interest in grouping computer 

resources in order to facilitate the simultaneous processing of parallel code. A cluster 

computer is a grouping of computers normally connected by some sort of fast local 

network so as to make the cluster perform as a single entity. As mentioned earlier, in 

1954 the IBM Corporation built the SAGE cluster for the U.S. Air Force as a semi-

automated air defense system. By 1961 there were more than 20 operational SAGE sites 

in the United States, and all of them were remote linked in a computer-to-computer 

network. While this is an extreme predecessor to toda\¶s clusters, and certainl\ not a 

commodity cluster, it was one of the first to embody the idea of operating interconnected 

systems across a fast network. Today there are several different types of cluster 

architectures each offering different advantages. The three major types of clusters are the 

High Availability Cluster, Load-Balancing Cluster, and High Performance Cluster.  

High Availability Clusters are normally designed to ensure constant availability of 

the server by the use of redundant nodes. This eliminates the chance of down time due to 

a single point failure. Load Balancing Clusters use devoted frontend nodes to route work 

to all of the other available nodes. This provides for a load balancing across the available 

interconnected nodes thereby increasing the efficiency of the system. High Performance 

Clusters (HPC) or High Performance Cluster Computing uses clusters of relatively 



18 | P a g e  
 

inexpensive yet powerful computers to solve difficult computational problems. They are 

designed to exploit the parallel processing power of multiple nodes and normally require 

that the nodes be able to communicate with each other during processing. 

Cluster computer programming is normally divided into an architecture model 

based on the relationship of the programming to the data that the programming will 

interface with. This has led to 4 well known models: the Single Instruction Single Data 

type (SISD), Single Instruction Multiple Data (SIMD), Multiple Instruction Single Data 

(MISD) type, and the Multiple Instruction Multiple Data type (MIMD).  

In the Single Instruction Single Data (SISD) model the cluster uses each processor 

to execute a single instruction stream on a single memory. In the Single Instruction 

Multiple Data (SIMD) model each processor will execute a single instruction stream on 

multiple data in memory simultaneously.  In the Multiple Instruction Single Data (MISD) 

model, each of the processors will execute different instruction streams on the same 

single data in memory. This is a type of parallel computing architecture but not 

practically useful. The last type is the most common type of parallel architecture, the 

Multiple Instruction Multiple Data model (MIMD). In this model, the different 

processors are individually executing different instruction streams on multiple parts of 

the data. In MIMD systems each processor is autonomous, meaning that it has its own 

CPU and ALU and no common clock between processors.  These types of machines can 

be either shared memory or distributed memory machines. 

In the shared memory type of machine, the memory is available to all processes 

and is normally interconnected by a network. This network usually takes the form of 

either a bus-based architecture or a switch-based architecture. In a bus-based design 



19 | P a g e  
 

multiple processors are simultaneously accessing memory thru the common bus. This 

could lead to bottlenecks caused by the limitations of the bus. In the switch-based design, 

the shared memory is normally interconnected with a network. One type of network is the 

crossbar switching network. This type of interconnect is not feasible for a large number 

of processors. Another form of interconnection used is the hierarchical connection. This 

uses a hierarchy of buses to connect and give each processor access to the other 

processor¶s memor\. 

In the distributed memory type of machine, each processor has its own individual 

memory location and the data shared among processes must be passed from one 

processor to another as a message. The drawback to this type of design is that of having 

to connect processors to each other in order to share data. One way to minimize this 

problem is to only connect each processor to several others. This has given rise to some 

popular designs such as the hypercube and mesh. The Hypercube scheme requires a 

minimum of 4 processors and they connect to each other forming a cube. As more 

processors are added, the total number of nodes must be 2N, where N is the network 

diameter and each node connects to N other nodes. The mesh scheme uses the processors 

in a two-dimensional grid that interconnects each processor to 4 of it¶s neighbors. 

Aside from how a cluster handles the programming in relation to its data, cluster 

programming models can also be divided b\ how the\ handle the cluster¶s inherent 

parallelism. There are two main categories of programming. The first category is when 

serial programming is used to exploit the parallelism of a system. The second is where 

the programming is explicitly made to run as parallel code.  



20 | P a g e  
 

Pfister[13] established the term SPPS (serial program, parallel subsystem) to 

describe the common technique of running serial programming in parallel on a cluster. A 

parallel subsystem allows input to each instance of the serial code and takes each instance 

of output to deliver to the user. Since this is an example of multiple programs operating 

on multiple data, this is a MIMD system. The two most common ways to implement 

SPPS programming are through distributed shared virtual-memory and message passing. 

Message passing is described in some detail in the section discussing the Rocks Software. 

This project will utili]e Pentium 4 processors which support Intel¶s 

hyperthreading technology and distributed memory. Hyperthreading technology allows 

the operating system to see two processes in each core which can allow programming to 

use the cluster nodes as any of the architectures; SISD, SIMD, MISD, or MIMD. The 

overall cluster is considered Multiple Instruction Multiple Data architecture with 

distributed memory. 

 

4.2 WOPPR Cluster Design 

The original components for this cluster were found after the Physics Department 

cycled a group of computers out of service. This included 10 Dell GX620 mini-form 

factor computers and one Dell GX620 desktop computer. These particular computers had 

been in operation within the Physics Department since late 2005 to early 2006. The 

original specifications for each PC are listed in Table 9 below and a more detailed listing 

of the BIOS data is included in Appendix A. A significant bonus to using standard PCs 

for a cluster is that no extra enclosure or rack design is really required. Each of the PCs 

used is originally in its own desktop (or similar) case including heatsinks and fans.  A 



21 | P a g e  
 

small cluster could physically be connected as long as you can fit all of the computers 

into the same area to be connected to a switch. However, as more and more nodes are 

added, the space and power required could become a limiting factor. 

Since this particular cluster was going to be housed in a very small room, we 

decided to look for a more traditional case to mount the individual nodes inside. The 

cluster was to be formed with the initial GX620 mini-form factors making up the blades 

and the desktop providing the Frontend for the cluster. As more computers become 

available in the future, they can be added to the cluster. To accomplish this, the initial 

cluster rack design had to incorporate a space fabricated to the dimensions of the mini-

form factor, and another space that could accommodate either ATX or micro-ATX form-

factors.  

We were able to find an enclosure to use for housing the cluster in a pile of metal 

recycling. The enclosure was an old Compaq rack, and is shown in Figure 4. The 

internals of the rack had been removed leaving only a shell to work with. The initial 

design concept for the mini form factor space was to manufacture a horizontal sliding 

rack to support 10 or 12 of the mini form factor motherboards in a vertical orientation in 

order to take advantage of the natural airflow path from bottom-to-top in the server rack.   

   
  



22 | P a g e  
 

Table 9 Specifications of Computers in the WOPPR Cluster 
Node woppr-0-0 woppr-0-1 woppr-0-2 woppr-0-3 woppr-0-4 woppr -0-5 

Processor Pentium 4 Pentium 4 Pentium 4 Pentium 4 Pentium 4 Pentium 4 
Clk Spd 3.4 GHz 3.4 GHz 3.4 GHz 3.4 GHz 3.2GHz 3.4 GHz 
Bus Spd 800 MHz 800 MHz 800 MHz 800 MHz 800 MHz 800 MHz 
L2 Cache 2 Mb 2 Mb 2 Mb 2 Mb 2 Mb 2 Mb 
Memory 2Gb 2Gb 2Gb 2Gb 2Gb 2Gb 
Mem Spd 533 MHz 533 MHz 533 MHz 533 MHz 533 MHz 533 MHz 

Node Original 
Frontend 

New 
Frontend woppr-0-6 woppr-0-7 woppr-0-8 woppr-0-9 

Processor Pentium 4 
Prescott 
Dt, 640 

Core 2 Quad 
Q8400 

Pentium 4 Pentium 4 Pentium 4 Pentium 4 

Clk Spd 3.2 GHz 2.66GHz 3.2GHz 3.4 GHz 3.4 GHz 3.4 GHz 

Bus Spd 800 MHz 1333 MHz 800 MHz 800 MHz 800 MHz 800 MHz 
L2 Cache 2 MB 4096 KB 1Mb 2 Mb 2 Mb 2 Mb 
Memory 2 Gb 4 Gb 2Gb 2Gb 2Gb 2Gb 
Mem Spd 533 MHz   533 MHz 533 MHz 533 MHz 533 MHz 

 

 
Figure 4 Rack enclosure. 

 
In order to determine the overall stability of each computer, a full-load stress-test 

was performed for a minimum of 4 hours using both Prime95[14] and OCCT[15]. Each 



23 | P a g e  
 

of these programs tests overall system stability by using computationally intensive 

mathematical operations such as Fast Fourier Transforms, and are performed in order to 

determine the maximum number of mathematical operations per second, as well as to 

ensure that the computer is safe from overheating even under maximum load. Each 

computer passed the full-load stress-tests without overheating, and so it was concluded 

that the stock cooling system would be adequate for further use.  

After the initial stress-testing of each computer in its case was successful, the 

computers were removed from their cases in order to give a better understanding of the 

physical layout of each individual component inside. This was necessary because in order 

to build a custom enclosure with maximized packing efficiency, the components would 

need to be re-adjusted and moved around. Upon removing the computers from their 

cases, it was noticed that each computer had varying levels of dust and grime buildup. 

This buildup of particles reduced the overall airflow through each case and meant that 

there was an excess buildup of heat around the central processing unit, which can be 

damaging and can shorten the lifespan of the computer.  

Once each computer was removed from its case, compressed air was used to remove 

the dust and grime buildup and stress-tests were once again performed using Prime95 and 

OCCT. Qualitative testing showed that removing the dust led to increased airflow 

through the computer, which in turn led to lower temperatures under full-load.  

Since the air would be flowing vertically, computer motherboards would also remain 

vertical, as would their external power supplies.  The mother board was approximately 

square, and slightly shorter than the longest dimension of the power supply.  The case 

had considerable depth, which easily facilitated two parallel rows of vertical computers, 



24 | P a g e  
 

so the depth was partitioned into two sections.  The width was slightly less than six times 

the width of the former computer cases.  Six units side by side would be too cramped to 

cool properly, but five would allow for reasonable spacing.  The maximum usable 

footprint was divided into a grid of two rows and five columns.  

 To allow for ease of access, the entire system would be mounted on drawer slides 

so it could be partially removed from the case.  A pair of 24 inch drawer slides was 

installed into the existing server mounting holes, using the original case screws (Figure 

5).   

 

 
Figure 5 Picture of drawer slide. 

 
Three pieces of one inch angle aluminum were attached to each of these slides at 

the center to extend the reach of the ends.  To these were attached two pairs of thin 

walled one inch angle aluminum to form the top and bottom of each row.  All these 

pieces were attached together with 10-24x1/4 button head machine screws.  The 

maximum usable width was measured and divided into five units, of the maximum height 

of each computer assembly. 



25 | P a g e  
 

 
Figure 6: Image of the drawer-rack. 

When the final height of the computer assemblies was determined, two aluminum 

strips were used to hang a pair of the same row attachments as before.  These were only 

half rails, for they would be counteracting only a bending moment.  The full second piece 

of aluminum was deemed unnecessary weight and expense. 

Each computer was removed from its case and stripped to the bare motherboard.  

First, the CPU heat sink mounting bracket no longer had a back plate to affix to.  Strips of 

tenth inch scrap plastic were cut to a convenient rectangular size, and were fashioned 

with pairs of #6-32 holes spaced to accept #6-32x5/8 socket head machine screws passing 

through the mounting bracket.   



26 | P a g e  
 

 
Figure 7: Image of back of computer - black plastic. 

  

Second, the hard drive was mounted aloft over the south-bridge on one inch stand-

offs, which formerly threaded into the back plate.  These stand-offs were threaded with a 

#4-40 thread, and were held directly to the motherboard in the same position as before by 

a pair of nuts. 

The one piece motherboard assembly now needed to be hung vertically inside the 

case to allow for proper airflow.  It was decided to orient the wire inputs of the 

motherboard down for ease of access.  The board was mounted on two strips of 3/4" 

angle aluminum with #6-32x5/8 socket head machine screws, using a 1cm2 piece of 

rubber repair gasket and a 1/4x20 nut as insulation and a spacer, respectively.    

 



27 | P a g e  
 

 
Figure 8: Image of gasket and nuts. 

 

The CPU fans were attached to the rails with half inch lengths of the same aluminum 

drilled to form angle brackets.   The direction of air flow was chosen to be up in order to 

facilitate the case airflow.  

 
Figure 9: Image of angle bracket. 



28 | P a g e  
 

The last element of the computer was the power supply.  Dell® had designed these 

computers with modular external power supplies.  To reduce the overall length of each 

computer¶s final shape, the power supply was mounted at a slight angle.  This way the 

effective height would be the same as the CPU heat sink, and allow for a pocket behind 

the supply for the cord to be stored.  The housing of the supply was held together by four 

specialty screws, which fit into extruded bosses inside the housing.  Two of these screws 

were discarded, and the bosses removed.  The two holes chosen were enlarged to allow 

for #6-32x5/8 socket head machine screws with one #6 washer to pass through and hold 

the incline brackets to the housing.  The remaining screws were used to hold the cover of 

the supply housing shut.  The side on which the supply was mounted was such that the 

standard power cord port was located upward.  Once the cord was coiled and stored 

behind the power supply housing, the computer blade was completed.  This process was 

repeated for all 10 computers. 

 
Figure 10: Image of PSU bracket. 



29 | P a g e  
 

 
Figure 11: Image of a completed blade. 

  

The nodes were attached to the rack with 10-24x1/4 button head machine screws, two 

at the ends of the top rail, and one at the end of the bottom rail. 

Once all ten computers were brought together, a convenient way to power them all 

became an issue.  Three break-out boards, one for each wire in the power cord, were 

mounted along the center support between the two groups of blades.  The ten power cords 

were severed at an appropriate length and wire lugs were installed.  The boards were 

mounted on a piece of 1/4 inch acrylic, and covered with a protective sheet of 1/10 inch 

acrylic.  The ten computers were then wired together onto one single power cord. 

 



30 | P a g e  
 

 
Figure 12: Image of power breakout board. 

  

One computer was tested at several points for the current drawn from the wall.  A 

short extension cord was fashioned with separated wires, and an induction multi-meter 

was used to measure the current on the hot line as the computer's usage and state were 

varied. The results are shown in Table 5 above. 

Peak instantaneous current draw was 1.17A.  After this test was completed, the line 

voltage was measured at 114.8 VAC.  From this, the estimated maximum power draw is 

1350W with maximum current 12A. 

The first network switch to be installed was also a component rescued from possible 

recycling. This was a Bay Networks BayStack 350F-HD 10/100 network switch with 24 

ports. Unfortunately, the switch made twice the noise and twice the heat as all 10 nodes 

combined so a replacement had to be purchased. An SMC EZNET-16 10/100Mbps 

switch was installed above the node rack using the rack mounting brackets provided by 

the manufacturer. The complete specifications of the switch can be found in Appendix C.  



31 | P a g e  
 

Initially a generic power strip was tie-wrapped to the top of the network switch to provide 

the required 115vac for the rack. This was subsequently replaced with a permanent rack 

mounted surge suppressor/power strip with both 15 and 20amp outlets. The specifications 

of the power strip can be found in Appendix D.  

An additional ATX power supply was added near the top of the rack to provide 

ready connectors for case lighting, temperature monitoring, etc. Temperature monitoring 

was provided by a digital display with 4 thermocouples attached. The thermocouples are 

placed as follows: one approx 15´ below the blades, one at the top of the cluster rack 

where the air exhausts, one on node 4 attached to the motherboard, and one next to the 

power adapter for node 4. After the cluster was moved into its present home and all nodes 

placed online, a max load was placed on the cluster in order to do an initial temperature 

monitoring survey. A small serial program running in an infinite loop was loaded on each 

thread resulting in 100% load for all 20 node threads over a period of 7 days. The 

temperature results are listed in Table 10. 

    Table 10 Temperature Monitoring Data 
Location Average Temperature 

(°C) 
Top of Rack 30.0 
Node 3 CPU Heat Sink 37.2 
Node 7 Power Supply 24.8 
Bottom of Rack (near floor level) 20.3 
Room Temperature (measured at 6¶ height) 21.8 



32 | P a g e  
 

Chapter 5: Software Descriptions and Installation 

This chapter will discuss the software requirements and installation necessary to 

setup a productive cluster capable of being used for both serial and parallel programming, 

and the software and setup required to benchmark the system. The main components are 

the Rocks Cluster distribution of the Linux operating system, a linear algebra system, and 

the C, C++, and Fortran libraries. The benchmarking setup required the installation of a 

Portable Implementation of the High-Performance Linpack Benchmark for Distributed-

Memory Computers (HPL). The description and installation of all of these software 

components will also be discussed below. 

5.1 Rocks and Rolls 

The Rocks Cluster is available with several rolls that have been formatted 

specifically for use with the Rocks environment. A roll is a distribution of a program; one 

or more applications and their associated libraries configured to work with the kernel 

version of Linux that it was rolled for. The Rolls included in the original build of this 

cluster are Area51, Ganglia, HPC, pvfs2, SGE, and Web-server. Each of these will be 

discussed below. 

5.1.1 Rocks v5.3 

The National Partnership for Advanced Computational Infrastructure (NPACI) at 

the San Diego Supercomputer Center (SDSC) of the University of California, San Diego 

(UCSD) began work on NPACI Rocks in 2000 on a grant from the NSF and has 

continued to make refinements and improvements over the years on further NSF 



33 | P a g e  
 

grants[16][17][18]. The initial philosophy of the group was to develop a toolkit that 

would simplify the version tracking of the software and also simplify cluster 

integration[19].  

The predominant method at the time for cluster management was a painstaking 

comparison of configuration across the nodes involved. This was time consuming and 

impractical as the number of nodes expanded. Their idea was to create a mechanism that 

built on a popular commercial distribution of Linux and provide a means to ensure that 

customized distributions for individual nodes could be automatically maintained. They 

accomplished this by adopting the paradigm of making the complete OS installation on a 

node the default management tool. This means that whenever there is any doubt as to the 

nodes integrity or configuration, a complete OS installation can occur in a short period of 

time to restore the node to a customized default condition. This completely removed the 

exhaustive comparisons previously required to keep nodes configured and it also allowed 

for a level of automation that makes management of huge clusters fairly easy and less 

time consuming. Another key benefit of the ability to create customized distributions for 

the nodes is that the security patches can be pre-installed in the distribution along with 

any other changes that define the node or appliance.  The different node or appliance 

types are defined within a machine specific file called a Kickstart file.  

The Kickstart file is made from a Rocks Kickstart Graph. This is an XML-based 

tree structure and is used to define the differences between node and appliance types 

without needlessly duplicating their similarities. The Kickstart File is text-based and 

contains the descriptions of the software configurations and packages to be installed on 



34 | P a g e  
 

the nodes. This file is user configurable and is used to address all of the questions 

normally asked during an installation.  

The management strategy developed by the NPACI team is designed to simplify 

management of the cluster and to promote experimentation. All of the software is 

deployed using the Red Hat Manager (RPM) and designed for scalable services such as 

DHCP, HTTP, and NFS. The compute nodes use Kickstart¶s HTTP method to obtain the 

RPMs from the Frontend for installation. The Dynamic Host configuration Protocol 

(DHCP) is used for Ethernet configuration of the nodes and the Network File System 

NFS is used to export all user home directories from the frontend to the compute nodes. 

The use of RPMs also provides an easy tool for maintaining the software. A tool 

incorporated into Rocks, called Rocks-Dist, gathers software components that have been 

installed locally, the 3rd party software that have been installed, and creates a customized 

distribution which looks just like a Red Hat or CentOS distribution but with more 

software added. After the initial installation of a node, any subsequent re-installation will 

not affect any non-root partitions on the nodes. This means that any scratch or user 

partitions that have been created will be maintained. The default action for nodes on a 

loss of power is to do a re-install on power-up. The average time for a node re-installation 

on the WOPPR cluster was measured at 11min 40sec. 

The cluster hardware requirements are standardized to conform to other high-

performance computing clusters, and are listed in Table 11 below. Also shown below in 

Figure 14 is a picture of how the cluster should be connected. The cluster uses the 

Ethernet network for management purposes. A separate specialized network such as 



35 | P a g e  
 

Infiniband, Myrinet, or Gigabit Ethernet can be added for low-latency, high-bandwidth 

message passing for parallel programs.  

Table 11 Cluster Hardware Requirements 
Frontend Node  
Hard Disk 30 GB 
Memory Capacity 1 GB 
Ethernet 2 physical ports 
Compute Node  
Hard Disk 30 GB 
Memory Capacity 1 GB 
Ethernet 1 physical port 
BIOS Boot Order CD, PXE(network Boot), Hard Disk 

 

 
Figure 13 Frontend and compute node setup. 

 

Rocks v5.3 is the operating system used for this cluster project. It is available 

from the Rocks Clusters website [20] as either several CD images or a single DVD image 

and comes in either 32-bit or 64-bit versions. The DVD .iso image also comes with the 

following rolls included, Adaptive Poisson-Boltzmann Solver (apbs), area51, 

bioinformatics utilities (bio), ganglia, rocks HPC roll (hpc), jumpstart, PVFS2 parallel 

file system support (pvfs2), Sun Grid Engine (SGE), Torque & Maui job queuing system 



36 | P a g e  
 

(torque), viz, Rocks Web Server roll (web-server), and Xen (xen) for building xen VMs 

on cluster nodes.  

5.1.2 Rocks OS Installation 

After making all of the connections between the frontend, nodes, switch, and the 

internet, the WOPPR was ready for the software installations. The 64-bit Jumbo DVD 

.iso image had been downloaded from the Rocks website and burned to a DVD[21]. The 

first thing to check before installing the software is that eth0 on the frontend must be 

connected to the Ethernet switch and eth1 must be connected to the external network. If 

there are more than two Ethernet connections on the nodes, then you must ensure that 

eth0 is connected to the switch.  

The minimum requirements to load the OS are the Kernel/Boot CD, Base Roll 

CD, the Web Server Roll CD, and the two OS Roll CDs. Since we are using the Jumbo 

DVD image, all the required CDs and extra Rolls are included.  

1. Insert the DVD in the frontend and reboot it.  

2. After the frontend boots from the DVD the following screen will appear: 



37 | P a g e  
 

 
Figure 14 Rocks installation splash screen. 

 

T\pe ³build´ at the prompt. If this prompt is missed, the installation will 

continue as if a compute appliance were being installed. The only way to get 

back is to power down the frontend and restart the process. 

3. In this section there are some screens that will not appear if the IP for the 

cluster was set up as a static IP. If this is the case, then there will not be a 

DHCP server on the network to answer the DHCP setup requests from the 

frontend and the user will have to supply the information. Since the WOPPR 

IP address was set up as static, all the configurations will be shown below. 



38 | P a g e  
 

 
Figure 15 Rocks installation TCP/IP configuration. 

 
This is the first screen to appear. Since we are static, we need to configure 

everything manually.  Enable IPv4 support was selected, and Manual 

configuration of the IPv4. IPv6 support is disabled. The resulting screen is 

shown below: 

 
Figure 16 TCP/IP configuration selections. 

 
We select ³OK´ and the ³Manual TCP/IP Configuration´ screen will show: 



39 | P a g e  
 

 
Figure 17 TCP/IP configuration data entry. 

 
The public IP configuration was entered as follows: 

x IPv4 address: 130.215.96.65/255.255.255.0 

x Gateway: 130.215.96.1 

x Name Server: 130.215.32.130, 130.215.39.18, 130.215.36.18 

After entering the information and selecting ³OK´, the ³Welcome to Rocks´ 

screen appears. 

 
Figure 18 Rocks Roll selection screen. 



40 | P a g e  
 

 
4. This is the screen we use to select the rolls for installation. There is an option 

to connect to a server to install the rolls as well as using CD/DVDs. Since we 

are using the Jumbo DVD we select the CD/DVD button and the CD tray will 

eject as the following screen appears. 

 
Figure 19 Rocks Roll selection, screen 2. 

 
5. All of the Rolls are on the DVD so the tra\ is pushed back in and ³continue´ 

is selected. The kernel/boot Roll and all other Rolls will be detected and a 

screen similar to the following will appear: 



41 | P a g e  
 

 
Figure 20 Rocks Roll selection, screen 3. 

 
6. Select the kernel/base, OS, web-server, and all other Rolls to be installed. 

Then select the ³Submit´ button. The following screen is the ³Cluster 

Information´ screen below:  

 
Figure 21 Rocks cluster information screen 



42 | P a g e  
 

 
7. The onl\ vital field on this page is the ³Full\-Qualified Host Name´ field. All 

of the other fields are optional. The Host Name is written to dozens of files on 

both the frontend and compute nodes. After the installation it is almost 

impossible to change this without causing several services such as NFS, SGE, 

and more to become disabled.  The WOPPR information was entered as 

follows: 

  
          Table 12 Rocks Cluster Information 

Fully-Qualified Host Name: woppr.wpi.edu 
Cluster Name: WOPPR 
Certificate Organization: WPI 
Certificate Locality: Worcester 
Certificate State: MA 
Certificate Country: US 
Contact: etuzel@wpi.edu 
URL: http://users.wpi.edu/~etuzel/Welcome.html  

 
After filling in this information and selecting ³NEXT´ the following screen 

appears:  

 
Figure 22 Example Ethernet configuration for eth0. 



43 | P a g e  
 

 
8. Since this is the setup for the private network between the frontend and the 

compute nodes, we leave it at the default settings. Continuing to the next 

screen, we have to set up the external network information. 

 
Figure 23 Example eth1 configuration screen. 

Our cluster information was entered as follows: 

x IPv4 address: 130.215.96.65 

x Netmask: 255.255.255.0 

 Continuing to the next screen is the Gateway and DNS entries in Figure 24. 

x Gateway: 130.215.96.1 

x DNS Servers: 130.215.32.130, 130.215.39.18, 130.215.36.18 

 



44 | P a g e  
 

 
Figure 24 Example gateway/DNS configuration. 

 
9. The WOPPR external information is shown above. Selecting ³Next´ moves us 

to the ³Root Password´ screen. Enter a password and confirm it. 

10. The following screen is the time zone and NTP Server. The server can be left 

at the default ³pool.ntp.org´. 

11. The following screen is the disk partitioning screen shown in Figure 26. If 

automatic partitioning is selected then Rocks will create default partitions on 

the frontend drive. These partitions are shown in Table 13. 

             Table 13 Default Rocks Partitioning 
Partition Name Size 
/ 16 GB 
/var 4 GB 
swap 1 GB 
/export the remainder of the root disk 

 



45 | P a g e  
 

The /export partition is symbolically linked to /state/partition1. The / partition is 

the root. The /var partition is where all of the services are kept. The /export 

partition is where the user accounts and directories are stored, also the Rolls. We 

originally installed the OS with default partitioning on the original frontend. 

When we changed out the frontends we decided that the default partitioning was 

too confining, and proceeded with a manual partitioning. 

 

 
Figure 25 Partitioning selection screen. 

 
12. After selecting Manual Partitioning the Red Hat manual partitioning screen 

will appear. This is shown in Figure 26. Since this was a new drive there was 

only free space listed. In order to set up partitions this needs to be deleted 

first. Then enter ³New´ and choose the Mount Point, T\pe, and Si]e to create 

a partition. The sizes we selected are shown in Table 14. 

           
  



46 | P a g e  
 

        Table 14 WOPPR Manual Partitioning   
Partition Name Size 
/ 100 GB 
/var 12 GB 
swap 2 GB 
/export the remainder 1TB 

 

 
Figure 26 Manual partitioning example screen. 

 
13. After finishing the partitioning and selecting ³Next´, the frontend will format 

the file systems. At the end of the format, it will proceed with the Roll 

installation (because they are on the DVD). After the last of the Rolls is 

installed, the frontend will reboot to complete the process.  

  



47 | P a g e  
 

5.1.3 Cluster Node Installation 

The Rocks installation uses the Red Hat Linux Anaconda installer. This obtains 

all the configuration inputs it needs from the Kickstart file. At the time the installation is 

checking for a Kickstart file for the compute node, it will also do a check for the attached 

video signal. If it does not detect a monitor attached then the installation will hang at that 

point. To ensure the installation starts, a monitor needs to be attached to the compute 

node being installed. This can be bypassed on newer motherboards with Intelligent 

Platform Management Interface (IPMI) installed and configured. After the installation is 

complete, the install action can be changed to allow the nodes to function without a 

monitor attached. See Section 5.1.3.2 for this procedure. 

1. Login to the frontend as root using the password that was set during the 

installation. 

2. Enter the following to run the program that captures compute node DHCP 

requests and enters the information into the Rocks MySQL database. 

# insert-ethers 



48 | P a g e  
 

 
Figure 27 Appliance selection screen. 

 
There are several Appliance types listed. Before the first node is installed, we 

need to select ³Ethernet Switches´. This is due to the fact that managed 

Ethernet switches issue DHCP requests in order to receive IP addresses. When 

insert-ethers captures the DHCP request from the switch it will 

configure it as an Ethernet switch and enter the information in the MySQL 

database. The insert-ethers may not show any indication that the switch 

has been configured and the blank insert-ethers screen shown in Figure 

28 will be shown. After several minutes the F8 key should be pressed to exit. 

The screen shots included here are from the online manual and have not been 

updated to reflect the version 5.3 changes which replaced the F10/F11 keys 

with F8/F9. Restart insert-ethers and select ³Compute´ for the compute 

node. 



49 | P a g e  
 

 
Figure 28 Insert-Ethers screen. 

 
3. The blank insert-ethers screen will appear.  

4. Start the first compute node. As the node starts up, we entered the BIOS to 

ensure that the boot sequence is set to PXE (Network Boot) prior to Hard 

Disk. For PCs that do not support the PXE boot, the installation would have 

been to be done by inserting the kernel Roll CD and booting from CD first. 

For the WOPPR, all PCs are capable of PXE boot. As the node progresses 

through the boot sequence, it will broadcast its MAC ID while it looks for a 

PXE connection. Insert-ethers receives the DHCP request from the node and 

displays it on the screen, shown in Figure 29 below. 



50 | P a g e  
 

 
Figure 29 Insert-Ethers recognizes MAC address. 

 
This screen indicates that the DHCP request from the node has been received, 

inserted into the MySQL database, and that all configuration files have been 

updated. As soon as that process is completed (lasting about 5 seconds) then 

the screen in Figure 30 will be shown.  

  
Figure 30 Insert-Ethers assigns the node name. 



51 | P a g e  
 

 
This indicates that the node has not requested a Kickstart file yet. In this 

screen the new node name is shown. The default format for Rocks is 

³compute-x-x´. If we were going to install a node with a specific node 

name then we would follow the procedure listed below in Section 5.1.3.1. 

When the new node has successfully requested the Kickstart file the screen 

will change to show an asterisk as shown in Figure 31.  If there was an error 

during this part, an error code would be displayed where the asterisk is. 

 
Figure 31 Insert-Ethers, node Kickstart request successful. 

 
5. After the asterisk is shown, F8 can be pressed to exit this screen before starting 

the next node installation. This process was repeated to install all 10 compute 

nodes into the WOPPR cluster.  

Since programs and scripts should never be run from the root user if possible, 

the first thing that was done after the installation was to set up the user accounts. 

This was done using standard Linux commands as follows: 



52 | P a g e  
 

# useradd username 

# passwd username 

# rocks sync users 

 

This µs\nc¶ forces the 411 service to update all the configuration files and 

propagate the changes to the compute nodes.  

 

5.1.3.1 Fun with Node Names 

If a specific compute node name is required, then the steps below should be 

followed. Compute nodes are installed in Rocks in cabinets and each cabinet is filled with 

its nodes. So under the default nomenclature, compute-0-4 is the 5th node in the first 

cabinet and compute-2-3 is the 4th node in the 3rd cabinet. 

- To assign specific cabinet and rank: 

# insert-ethers --cabinet=x --rank=y  

Where x and y are the numbers you want to assign to this particular node. 

If only the cabinet switch is used, then the rank would start at 0 and 

increment with nodes.  

- To use a name other than the default ³compute´: 

# insert-ethers --baVename=´c´  

Where ³c´ would be the name \ou want to use. This would result in nodes 

c-<cabinet>-<rank>. 

- To correct any errors or incomplete setup of nodes, the database entries have 

to be removed, and the configuration files need to be synchronized before 

continuing. The following steps should be used: 



53 | P a g e  
 

# insert-ethers --remoYe ³compXWe-x-[´ 

# insert-ethers --update 

# rocks sync config 

# insert-ethers --cabinet=x --rank=y 

5.1.3.2 “Headless” Installs 

In order to configure the compute nodes for re-installations without having a 

monitor hooked up, the INSTALLACTION needs to be changed. Rocks supports several 

install actions, these are listed below. 

 

[root@woppr var]# rocks list bootaction 
ACTION    KERNEL              RAMDISK               ARGS                                                                                   
install:  vmlinuz-5.3-x86_64 initrd.img-5.3-x86_64 ks ramdisk_size=150000 lang= devfs=nomount pxe kssendmac 
selinux=0 noipv6              
install headless: vmlinuz-5.3-x86_64 initrd.img-5.3-x86_64 ks ramdisk_size=150000 lang= devfs=nomount pxe kssendmac 
selinux=0 noipv6 headless vnc 
memtest:  kernel memtest     ------------------ ------------------------------------------------------------------- 
os:       localboot 0        ------------------ ------------------------------------------------------------------- 
pxeflash: kernel memdisk bigraw pxeflash.img          keeppxe                                                                                
rescue:   vmlinuz-5.3-x86_64    initrd.img-5.3-x86_64 ks ramdisk_size=150000 lang= devfs=nomount pxe kssendmac 
selinux=0 noipv6 rescue    

   

For each node to be configured, the following was entered: 

# rocks set host installaction compute-0-0 acWion=´inVWall headleVV´ 

After all the applicable nodes have been set, the following command was run to check 

them: 

# rocks list host 

The output is listed below: 

[root@woppr var]# rocks list host 
HOST         MEMBERSHIP CPUS RACK RANK RUNACTION INSTALLACTION    
woppr:       Frontend   4    0    0    os        install          
compute-0-3: Compute    2    0    3    os        install headless 
compute-0-5: Compute    2    0    5    os        install headless 
compute-0-6: Compute    2    0    6    os        install headless 
compute-0-7: Compute    2    0    7    os        install headless 
compute-0-8: Compute    2    0    8    os        install headless 
compute-0-9: Compute    2    0    9    os        install headless 



54 | P a g e  
 

compute-0-1: Compute    2    0    1    os        install headless 
compute-0-2: Compute    2    0    2    os        install headless 
compute-0-0: Compute    2    0    0    os        install headless 
compute-0-4: Compute    2    0    4    os        install headless 

 

5.1.4 Ganglia 

The Rocks installation includes Ganglia which provides a web based graphical 

interface for monitoring all metrics recorded from the cluster. Ganglia is a scalable 

distributed monitoring system for high performance computing systems such as clusters 

and Grids[22]. Ganglia uses a multicast listen and announce type of protocol to monitor a 

cluster. This provides the ability to automatically detect the presence or absence of nodes. 

This is accomplished by maintaining a heartbeat on each node. If the heartbeat is missing 

for a period of time from a node, then that node is considered inactive. The heartbeat 

indicator is shown below in Ganglia¶s Node view of the cluster, Figure 32. 

 
              Figure 32 Ganglia node physical view. 

 
Each node collects metric data on itself and distributes the information whenever 

an update occurs. All nodes listen for these updates; therefore all nodes maintain data on 

the status of the entire cluster. The implementation of ganglia is accomplished through 

the use of several daemons and command line tools. Each node or machine that will be 



55 | P a g e  
 

monitored runs the gmond daemon. This is a small service running in background that 

collects the metric data from the machine it is on and uses the listen/announce protocol to 

transmit this data over TCP. The gmetad daemon is a meta daemon used to collect data 

from all gmetad and gmond sources and store the information to disk. The gmetric 

command line application allows some customization of metrics on hosts being 

monitored. Another command line tool is gstat which can be used to query a specific 

gmond for information. A screen shot of the Ganglia frontend is shown in Figure 33 

below. This is the primary means of monitoring the cluster activity and health.  

 

 
Figure 33 Ganglia frontend for cluster. 

 



56 | P a g e  
 

5.1.5 Sun Grid Engine 

The Sun Grid Engine (SGE) is a workload manager used to manage and balance 

the distribution of jobs across the cluster. The SGE Roll was one of the Rolls selected and 

installed during the Rocks Cluster installation. The frontend pc runs the qmaster daemon 

and the nodes all run the execution daemon. The concept behind the SGE is to have a 

management tool in place that can automatically perform the job of scheduling and 

running submitted jobs across the cluster. When a cluster has only several nodes, this 

would seem to be a trivial concern. But since a cluster could reach thousands of nodes in 

size (10,000 is the current limit on SGE), this task would be next to impossible to 

manually perform.  

To submit a job, a user would use one of the submission commands such as qsub 

or use the graphical user interface, QMON, to submit it. The QMON Main Control panel 

is shown in Figure 34. Once a job is submitted, it passes through the following three 

states: pending, scheduled, and running. While it is pending, the qmaster uses policies 

that may have been set up to determine its ranking. If no policies are set, then all jobs 

have the same importance. As soon as the number of slots required is available, the job 

will be scheduled to a machine. After the job is scheduled, it is sent to the execution 

daemon on that machine to be run. The QMON hosts screen is shown in Figure 35. This 

view shows what hosts are available, how many CPUs are available, and information on 

memory that may be needed to configure jobs. (Figure 35 also shows two nodes, 

compute-1-0 and compute-1-1, that were added to the cluster for some testing not directly 

related to this project) 

 



57 | P a g e  
 

 
        Figure 34 QMON main control panel. 

 
  Figure 35 QMON cluster queues page. 

The job will continue to run until it either completes, fails, or is terminated or 

interrupted. After completing or failing, the execution daemon notifies qmaster, and the 

job is removed from the list of active jobs. Figure 36 below shows an example of the 

Finished Jobs screen from QMON. 



58 | P a g e  
 

 
  Figure 36 QMON job control screen. 

 
SGE is capable of running interactive jobs, parallel, and what it terms µarra\ jobs¶. 

Parallel jobs are handled with the MPICH2 that is included in the Rocks distribution to 

manage the message passing required for parallel processes. The µarra\¶ jobs are serial 

jobs. The difference between the parallel jobs and the serial jobs is that SGE must run all 

the parallel processes simultaneously while the array jobs can run serially or in tandem.  

 

 

 



59 | P a g e  
 

5.1.6 Area51 

The Area51 Roll was also selected and installed during the Rocks installation. 

This contains the following two software packages: Tripwire[23] and chkrootkit[24]. 

Tripwire is a free software security and data integrity tool based on code originally 

contributed by Tripwire, Inc in 2000. The Tripwire scans the filesystem and stores 

information about it in a database. Subsequent scans can compare the information to the 

baseline and alert the user to any changes. After Tripwire is installed on the system, it can 

be viewed from a tab on the main cluster web page shown in Figure 37.  

 
Figure 37 Main cluster webpage. 

 



60 | P a g e  
 

Selecting the Tripwire tab on the page above will open a Reports page with links 

to report archives by month as well as the most recent report. Each report is a 

chronological listing of any changes or policy violations and the details of each instance. 

An excerpt from the cluster Tripwire report page is shown below in Figure 38. 

 
Figure 38 Tripwire Reports page. 

 

Chkrootkit is a program for checking systems for known rootkits. It is a command 

line tool that makes comparisons between the filesystem and the output of the process 

status command to look for directories. A check can be made by running the following 

command line: 



61 | P a g e  
 

# /opt/chkrootkit/bin/chkrootkit 

This will result in an output similar to the following:  
 
[root@woppr ~]# /opt/chkrootkit/bin/chkrootkit  
ROOTDIR is `/' 
Checking `amd'... not found 
Checking `basename'... not infected 
 

5.1.7 HPC 

The HPC roll contains software that is required to run parallel applications across 

a cluster. It consists of the following software packages: 

x OpenMPI and MPICH2 

x PVM 

x Benchmarks (stream, iperf, IOzone) 

OpenMPI is an open source implementation of the MPI-2 Message Passing 

Interface standard[25]. MPICH2 is also an open source implementation of the message 

passing libraries and covers implementation of MPI-1 thru MPI-2.2. The Message 

Passing Interface (MPI) is a library of subroutines that can be called from Fortran or C 

programs. These subroutines are what are used to program parallel code.  

PVM (Parallel Virtual Machine) is a package that permits a cluster to be used as a 

single large parallel computer. This is accomplished by running a daemon on all of the 

computers making up the cluster and starting the PVM program to create a virtual 

machine. The jobs that are run in this environment use the PVM library which provides 

the user-callable routines for message passing, coordinating tasks, etc.  

The use of the PVM program was not included in the scope of this project. 

  



62 | P a g e  
 

5.1.8 Programming Languages 

The Rocks installation includes the GNU Compiler Collection which includes 

front ends for C, C++, and Fortran. These libraries are free open source collections. The 

compilers installed on our cluster are shown in Figure 39 below. 

[root@woppr ~]# ompi_info |grep compiler 
C compiler: gcc 
C compiler absolute: /usr/bin/gcc 
C++ compiler: g++ 
C++ compiler absolute: /usr/bin/g++ 
Fortran77 compiler: gfortran 
Fortran77 compiler abs: /usr/bin/gfortran 
Fortran90 compiler: gfortran 
Fortran90 compiler abs: /usr/bin/gfortran 

Figure 39 Compilers installed on the WOPPR. 

 

5.2 GotoBLAS2 

For a Basic Linear Algebra package, we installed GotoBLAS2. This is a package 

of hand-coded subroutines developed and optimized by Kazushige Goto[26]. These 

subroutines are used to perform basic linear algebra operations such as vector and matrix 

multiplication.  

5.2.1 GotoBLAS2 Installation 

GotoBLAS2 is available from the Texas Advanced Computing Center[27]. After 

the untar was done placing the program in the /opt/GotoBLAS directory, the installation 

is started b\ running the script ³make´. This detects the Fortran compiler, the number of 

cores and the architecture of the processor. Since the default gcc library installed in the 

64-bit Rocks is also 64-bit, the GotoBLAS installer detects it and creates a 64-bit library. 

After the build was complete it displayed the following system information: 



63 | P a g e  
 

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 
 
 GotoBLAS2 build complete. 
 
  OS               ... Linux              
  Architecture     ... x86_64                
  BINARY           ... 64bit                  
  C compiler       ... GCC  (command line : gcc) 
  Fortran compiler ... GFORTRAN  (command line : gfortran) 
  Library Name     ... libgoto_penrynp-r1.13.a (Multi threaded; Max 
  num-threads is 4) 
 
 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= 

Figure 40 GotoBLAS2 build Information. 

 

5.3 HPL 

HPL is a Portable Implementation of the High-Performance Linpack Benchmark 

for Distributed-Memory Computers. This is an industry standard benchmark for high 

performance computers, and is used to rank the performance of computers submitted to 

the Top500 list[28]. This is a list of the 500 most powerful computer systems in the 

world. These are general purpose computers that are in common use.  HPL is a software 

package that solves a (random) dense linear system in double precision (64 bits) 

arithmetic on distributed-memory computers. The HPL package requires an 

implementation of MPI be installed on the system as well as a Linear Algebra System. 

The HPL program uses a data configuration file called HPL.dat. This file is 

shown in Table 15. Almost all of the variables involved in the linear calculations can be 

set with this data file. This was done to allow each user the opportunity to tune the 

process to a specific system. The details of this data file are covered in the benchmarking 

section. 



64 | P a g e  
 

5.3.1 HPL Installation 

The HPL software is available from the netlib.org website[29]. After downloading 

the file has to be un]ipped with ³gun]ip hpl.tg]´ and extracted by tar ³±xvf hpl.tar´. This 

creates the hpl directory and puts the program there. This is considered the top level 

directory, and will be used during the configuration setup. The next step is to create a 

Make.<arch> file in the top directory. We checked our architecture <arch> by typing: 

[root@bes ~]# arch 

x86_64 

This Make file contains the information on compilers, libraries, and paths. The program 

has many generic make files in the /setup subdirectory as shown below: 

[ctclark@woppr hpl]$ ls setup 
Make.FreeBSD_PIV_CBLAS  Make.IRIX_FBLAS          Make.Linux_PII_CBLAS     
Make.Linux_PII_VSIPL     Make.PWRPC_FBLAS       Make.T3E_FBLAS 
make_generic            Make.Linux_ATHLON_CBLAS  
Make.Linux_PII_CBLAS_gm  Make.Linux_PII_VSIPL_gm  Make.SUN4SOL2_FBLAS    
Make.Tru64_FBLAS 
Make.HPUX_FBLAS         Make.Linux_ATHLON_FBLAS  Make.Linux_PII_FBLAS     
Make.PWR2_FBLAS          Make.SUN4SOL2-g_FBLAS  Make.Tru64_FBLAS_elan 
Make.I860_FBLAS         Make.Linux_ATHLON_VSIPL  
Make.Linux_PII_FBLAS_gm  Make.PWR3_FBLAS          Make.SUN4SOL2-g_VSIPL  
Make.UNKNOWN.in 

 

We took the Make.Unknown.in file and edited that for our system. The changes 

required are highlighted below. The full configuration file is included as Appendix E. 

# - shell -------------------------------------------------------------- 
# 
SHELL        = /bin/sh 
# 
CD           = cd 
CP           = cp 
LN_S         = ln -s 
MKDIR        = mkdir 
RM           = /bin/rm -f 
TOUCH        = touch 
# 



65 | P a g e  
 

# ---------------------------------------------------------------------- 
# - Platform identifier ------------------------------------------------ 
# ---------------------------------------------------------------------- 
# 
ARCH         = x86_64 
# 
# ---------------------------------------------------------------------- 
# - HPL Directory Structure / HPL library ------------------------------ 
# ---------------------------------------------------------------------- 
# 
TOPdir       = /export/home/ctclark/Desktop/hpl 
INCdir       = $(TOPdir)/include 
BINdir       = $(TOPdir)/bin/$(ARCH) 
LIBdir       = $(TOPdir)/lib/$(ARCH) 
# 
HPLlib       = $(LIBdir)/libhpl.a  
# 
# ---------------------------------------------------------------------- 
# - Message Passing library (MPI) -------------------------------------- 
# ---------------------------------------------------------------------- 
# 
MPdir        = /opt/openmpi 
MPinc        = -I$(MPdir)/include 
MPlib        = $(MPdir)/lib/libmpi.so 
# 
# ---------------------------------------------------------------------- 
# - Linear Algebra library (BLAS or VSIPL) ----------------------------- 
# ---------------------------------------------------------------------- 
# 
LAdir        = /opt/GotoBLAS2 
LAinc        =  
LAlib        = $(LAdir)/libgoto2.a 
# 
F2CDEFS      = -DAdd__ -DF77_INTEGER=int -DStringSunStyle 
# ---------------------------------------------------------------------- 
# - Compilers / linkers - Optimization flags --------------------------- 
# ---------------------------------------------------------------------- 
# 
CC           = /usr/bin/gcc 
CCNOOPT      = $(HPL_DEFS) 
CCFLAGS      = $(HPL_DEFS) -fomit-frame-pointer -O3 -funroll-loops -W -Wall 
# 
LINKER       = /usr/bin/gfortran 
LINKFLAGS    = $(CCFLAGS) 
# 
ARCHIVER     = ar 
ARFLAGS      = r 
RANLIB       = echo 
# 
# ---------------------------------------------------------------------- 

Figure 41 HPL Make file configuration (affected lines). 

 



66 | P a g e  
 

After editing the file, it is saved as Make.x86_64. We do the build by typing 

³make arch=x86_64´. The next step is to edit the HPL.dat file in the top director\. The 

HPL.dat file is shown in Table 15. The details of the HPL.dat configuration file are 

discussed in Section 6.1 on HPL Configuration. 

 

5.4 Real World Application – The Gliding Assay Code 

The basis for assembling this computer cluster is to provide a tool for 

computationally intensive research. For the purposes of testing this, we are using the 

gliding microtubule assay simulations of Professor Tüzel.  

The cytoskeleton is a filamentous network found in cells which maintains cell 

shape, aids in cell motion, and plays a key role in intracellular transport and cell division. 

It is made up of microtubules, actin, and intermediate ¿laments, which together provide 

shape and mechanical integrity for the cell. Recent experiments in LLC-PK1 epithelial 

cells suggest that in addition to their role as cargo carriers, microtubules are also 

deformed and transported by molecular motors. Motivated by these experiments, and the 

supporting in-vitro gliding assay data, we model the collective behavior of microtubules 

and molecular motors using coarse-grained simulations.  

In the simulations, microtubules are modeled as semi-flexible polymers with rigid 

bond constraints embedded in a solvent.  Molecular motors exert forces on 

the microtubules, and walk along microtubule tracks according to their known force-

velocity relations, binding and unbinding stochastically. The simulations typically utilize 

a time step which is about 100 ns, and in order to reach realistic time scales that are of the 

order of tens of seconds, billions of iterations are necessary. In addition, due to the 



67 | P a g e  
 

stochastic nature of the simulations, ensemble averages over many different runs are 

required. It is therefore necessary to have computational architectures that enable the 

execution of multiple serial jobs, with little overhead.  We hope to learn more about the 

fundamental interactions between these cytoskeletal structures and proteins, and gain 

insight into the intracellular mechanical stresses, and the factors determining cell shape. 

A simulation snapshot showing a microtubule gliding over randomly distributed 

molecular motors is shown in Figure 42. The actual image shown in Figure 43 is a 

fluorescence image from a living epithelial cell. The bright tubular structures are the 

microtubules, which are labeled with a fluorescent protein (called GFP, Green 

Fluorescent Protein). 

The code written for the purpose of modeling the motors described above is called 

the Assay code. The installation and results for this code will be detailed in the following 

sections. 

 
Figure 42 Microtubule simulation snapshot. 

 

 
Figure 43 Microtubule image. 



68 | P a g e  
 

 

5.5 Intel Math Kernel Library Installation 

The Intel Math Kernel Library (MKL) is required in order to run the assay code. 

MKL is a library of math routines for science, engineering, and financial applications. It 

includes BLAS, LAPACK, ScaLAPACK, and others. This is written and optimized for 

Intel processors[30]. After downloading and untar the software package, a simple install 

script performs the installation.  

In order to be able to use the installed libraries across the compute nodes, the 

nodes need to have the libraries installed locally. This requires customization of the 

Rocks distribution to ensure that each time a node is rebuilt it will have the needed 

components included.  

The 64-bit libraries that were needed from Intel were installed as part of the Math 

Kernel Library (MKL) installation. To be able to use them, we had to create RPMs from 

the library subdirectories. This was done with the following commands:  

 # cd /export/rocks/install/contrib/5.3/x86_64/RPMS 

 # rocks create package /opt/intel/lib intel-node-libs 

Check the contents of the rpm 

 #rpm -qlp intel-node-libs*rpm 

These are intel-node-libs-1.0-1.x86_64.rpm and intel-node-mkl-libs-1.0-1.x86_64.rpm. 

These were placed into the directory: 

/export/rocks/install/contrib/5.3/x86_64/RPMS 

The Rocks configuration is customized through the use of an XML file. Since this is the 

first customization, we had to create the file to be used.  

 # cd /export/rocks/install/site-profiles/5.3/nodes 



69 | P a g e  
 

 # cp skeleton.xml extend-compute.xml 

Inside the extend-compute.xml file, there are several lines commented for use in adding 

packages.  

<!-- <package>insert 3rd package name here and uncomment the line</package> --> 

We changed two of these lines to add the packages listed above. Only the base name of 

the package is added to the extend-comute.xml file.  

<package> intel-node-libs </package> 

<package> intel-node-mkl-libs </package> 

The complete extend-compute.xml file is included in Appendix B. 

After the XML file has been edited, a new Rocks distribution needs to be built. 

This binds the new package into a Red Hat compatible distribution that will be used on 

all subsequent installations. 

# cd /export/rocks/install 

# rocks create distro 

After the distribution is built, all of the nodes need to be re-installed.  

# rocks set host installaction compute-0-0 acWion=´inVWall headleVV´ 

# shoot-node compute-0-0 

Now that all of the installations have been accomplished and the nodes have been re-

installed, the testing and benchmarking can be done. 

 

  



70 | P a g e  
 

Chapter 6: Testing and Benchmark Results 

After all of the software had been installed it was time to test the system. The test 

plan included the HPL testing for an industry standard test between the cluster we had 

built, and an Apple Xserve node we had on loan for testing purposes. For specific real-

world testing concerning research, we used varying runs of the Assay code mentioned 

earlier. Detailed explanations of both HPL and Assay are included in this section.  

6.1 HPL Configuration 

The HPL benchmark uses a file HPL.dat to allow user configuration of the test 

parameters. The file is show below in Table 15.  

Table 15 HPL.dat Configuration File 
Line #  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

HPLinpack benchmark input file 
WOPPR Testing, WPI 
HPLaa.out    output file name (if any) 
8                  device out (6=stdout,7=stderr,file) 
2                  # of problems sizes (N) 
30000  41344       Ns 
2                  # of NBs 
104 192            NBs 
0                  PMAP process mapping (0=Row-,1=Column-major) 
4                  # of process grids (P x Q) 
2 1 8 4            Ps 
4 8 1 2            Qs 
16.0               threshold 
1                  # of panel fact 
1 2                PFACTs (0=left, 1=Crout, 2=Right) 
1                  # of recursive stopping criterium 
2 4                NBMINs (>= 1) 
1                  # of panels in recursion 
2                  NDIVs 
1                  # of recursive panel fact. 
2                  RFACTs (0=left, 1=Crout, 2=Right) 
1                  # of broadcast 
0                  BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM) 
1                  # of lookahead depth 
0                  DEPTHs (>=0) 
2                  SWAP (0=bin-exch,1=long,2=mix) 
64                 swapping threshold 
0                  L1 in (0=transposed,1=no-transposed) form 
0                  U  in (0=transposed,1=no-transposed) form 
1                  Equilibration (0=no,1=yes) 
8                  memory alignment in double (> 0) 



71 | P a g e  
 

 
As mentioned earlier, all the parameters of the configuration file can be adjusted 

by the user. There has been some previous work concerning the behavior of HPL that 

suggests that not all parameters have an effect on performance[31]. However, there are 

enough variations in computing equipment to suggest that parameters that do not affect 

performance in one system may have an impact on a different system. This proved to be 

the case in our testing.  

HPL measures the floating point execution rate as it solves an order N dense 

system of linear equations of the form Ax=b using LU factorization. The matrix is 

divided into NB x NB blocks which are then dealt onto a P x Q processor grid using 

block-cyclic data distribution. The matrix size N, blocking factor NB, and the process grid 

ratio (P x Q) are the most important parameters with the other 15 input parameters used 

to fine tune the particular platform. Each of the line-items of HPL.dat is explained below. 

 

x Line 1 & 2: These are ignored and can be changed to whatever the user wants. 

HPLinpack benchmark input file 
WOPPR Testing, WPI 

x Line 3: This is used to specify the output file. If Line 4 is configured to send the 

output to a file then the file name needs to be listed here at the beginning of Line 

3.  The remainder of the line can be used for whatever notes the user wants to 

include. 

HPLtest9.out       output file name (if any) 

x Line 4: This line specifies where the output will go. The line must begin with a 

positive integer and everything after that integer is ignored. There are 3 choices 

for the integer, a 6 means that the output will go to the standard output, a 7 means 



72 | P a g e  
 

that the output goes to the standard error, and any other positive integer means 

that the output is written to the file specified in Line 3. 

8                  device out (6=stdout,7=stderr,file) 

x Line 5: This line specifies the number of problem sizes (N) to be executed. This 

needs to be a positive integer � 20. The rest of the line is ignored. 

2                  # of problems sizes (N) 

x Line 6: This line specifies the problem sizes to be run (N). Since line 5 specifies 

2, the first two positive integers on line 6 will be used and anything after that is 

ignored.  

30000  41344       Ns 

This value is the matrix size to be used (N). To get the best performance this 

should be the largest problem size that can fit in the memory available. The 

amount of memory that HPL uses is basically the size of the coefficient matrix. 

Since there is also overhead to be considered such as the operating system and 

other services, the general rule of thumb for HPL is to use about 80% of the 

maximum available memory. For an N x N matrix of double precision (8 byte) 

elements you consume N*N*8bytes. As an example, we have 8 nodes we will be 

using in the test, each with 2 GB of RAM for a total of 16GB of RAM.   

  

 ൌ ටሺீ஻ ௢௙ ோ ெሻ     
య௕௬௧௘௦ ீ஻ ሺ  ሻ

 ௕௬௧௘௦
    (1) 

Equation 1 Matrix Size (N) 

 



73 | P a g e  
 

If the problem size (N) is too big, it will be swapped out and performance 

will degrade. 

x Line 7: This line specifies the number of block sizes (NBs) to be run. This must 

be a positive integer � 20 and the rest of the line following that is ignored. 

2                 # of NBs 

x Line 8: This line contains the block sizes (NB) that the user wants to run. If Line 7 

started with 2, as it did in this example, then only the first two positive integers of 

line 8 are used and anything following that is ignored. 

104 192         NBs 

As pointed out earlier, the matrix is divided into NB x NB blocks, which 

are dealt onto the processor grid. So the NB value affects the data distribution as 

well as the computational granularity. An NB value that is too small will increase 

the overhead caused by excess message passing and it will decrease data reuse 

thereby limiting the computational performance. On the other hand, a smaller NB 

will allow for a better load balance. The normal range of NB values is given as 

32-256. The optimized value of NB is system specific and depends on the 

computation to communication performance ratio of the system. The NB is also 

supposed to scale. If an NB of 32 is found to work for smaller matrix sizes, then a 

multiple of 64 or 128 may work better for large problem sizes.  

x Line 9: This setting specifies how MPI will map processes onto the nodes. If all 

of the nodes have single core processors, then this setting doesn¶t matter. For 

multi-core processor nodes, row-major mapping is recommended. 

0           PMAP process mapping (0=Row-,1=Column-major) 



74 | P a g e  
 

x Line 10: This line specifies the number of process grids (P x Q) to be run. This 

must be a positive integer � 20 and an\thing following this integer is ignored. 

4                 # of process grids (P x Q) 

x Line 11 & 12: These two lines specify the process grids. The first integer on each 

line specifies the first grid (P x Q). The second number on each line specifies the 

second grid, and so on. Since Line 10 specified 4 process grids, there must be at 

least 4 sets of integers on lines 11 & 12. Anything after the 4th set will be ignored. 

The grid size must be a multiple of the number of processors being tested. HPL 

recommends a ratio of 1:k with k between 1 and 3 inclusive. P and Q should be 

approximately equal with Q being slightly larger. But, the grid ratio also depends 

on the physical interconnection network of the cluster. For a cluster connected by 

Ethernet, it is recommended to use as flat of a grid as possible, for example, 1 x 4, 

1 x 8, 2 x 4, etc..  

2 1 8 4            Ps 
4 8 1 2            Qs 

x Line 13:  This line contains a real number used as a threshold for checking the 

residuals. HPL recommends a value of 16.0. If this was set to 0.0 then all tests 

would flag as failures. If it is set to a negative number, then this comparison is 

bypassed. This is useful during the tuning phase to save time. Even if a test result 

flags as failed it may still be a pass. An actual failure would be of the order of 106 

or more. 

16.0              threshold 

x Line 14 – 21: These lines allow specific adjustments to the algorithm. Each of 

these adjustments will be processed in all possible combinations by HPL. These 



75 | P a g e  
 

values are adjusted and retested as needed to tweak the optimization of the cluster. 

One aspect of the tuning process that cannot be over emphasized is that these 

tuning adjustments are not independent. As one change to the algorithm is made, 

it could have an effect on other aspects of the algorithm. Also, as the size of the 

process grid and block sizes are changed, other factors such as the panel 

factorization or the way the recursion stop is handled may change. Therefore, 

each change must be tested and reevaluated each time another change is made. 

1                  # of panel fact 
1 2                PFACTs (0=left, 1=Crout, 2=Right) 
1                  # of recursive stopping criterium 
2 4                NBMINs (>= 1) 
1                  # of panels in recursion 
2                  NDIVs 
1                  # of recursive panel fact. 
2                  RFACTs (0=left, 1=Crout, 2=Right) 

x Lines 22 & 23: These settings adjust how the algorithm broadcasts the current 

panel of columns in process rows using a ring topology adjusted here. The 

settings of 1, 3, and 4 are recommended. 

1              # of broadcast 
0              BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM) 

x Line 24 & 25: These two lines control the look-ahead depth. With a setting of 0, 

HPL will factorize the following panel after the current panel is completely 

finished and the update by the current panel is finished. A setting of 1 or more 

means, that number specified of next panels will be factorized immediately and 

then the current panel will be finished. It is recommended that a value of either 1 

or 0 be used unless you are more experienced. 

1                  # of lookahead depth 
0                  DEPTHs (>=0) 



76 | P a g e  
 

x Line 26 & 27:  Line 26 specifies the swapping algorithm used by HPL. There are 

3 choices; a binary-exchange, a spread-roll(long), and a mixture where the binary-

exchange is used up to the threshold specified in Line 27 and then the spread-roll 

is used.  

2                  SWAP (0=bin-exch,1=long,2=mix) 
64                 swapping threshold 

x Line 28: Specifies whether the upper triangle of the panel of columns should be 

stored in no-transposed or transposed form. 

0                 L1 in (0=transposed,1=no-transposed) form 

x Line 29: Specifies whether the panel of rows U should be stored in so-transposed 

or transposed form. 

0                 U  in (0=transposed,1=no-transposed) form 

x Line 30: This enables/disables the equilibration phase. This option is not used 

unless either 1 or 2 is selected in Line 26. 

x Line 31: The memory alignment for memory space allocated by HPL. HPL 

recommends either 4, 8, or 16 on modern machines. 

 8               memory alignment in double (> 0) 

  



77 | P a g e  
 

6.1.1 HPL Machinefile 

When HPL is run with MPI, the executable (xhpl) uses a machinefile which 

names the nodes of the cluster. This is used to provide the node identification to the MPI 

processes. The machinefile used for the original cluster is shown in Table 16. 

              Table 16 Cluster Machinefile for HPL 
compute-0-0 
compute-0-1 
compute-0-2 
compute-0-3 
compute-0-4 
compute-0-5 
compute-0-6 
compute-0-7 
compute-0-8 
compute-0-9 

 
 

6.2 Gliding Assay Code 

As described in Section 5.4, the Assay code models the microtubule gliding over 

molecular motors. An example of the configuration file for the Assay Code is listed 

below in Table 17. The parameters changed in the configuration file for the purposes of 

this testing are the step length in line 7, and the Write motor configuration in line 22. The 

step time controls how many steps the time period is broken into. A smaller time means a 

shorter time period between data points and therefore more data points. The write motor 

configuration setting is a switch to turn on the writing of the motor configuration data to 

data files in a directory specified in line 2. The quantity of data generated is very large 

which means that with this setting turned on a very real data transfer consideration is 

introduced to the test time.  

  



78 | P a g e  
 

Table 17 Assay Code Configuration File 
1 # Directory for data storage 
2   data 

3 
# Random number seed:  0=random seed, any other number serves 
as seed 

4 0 
5 # Run length, averaging parameters 
6 # tmax transient step  trelease 
7   1.25E8  0E0       1.25E4   2.5E6 
8 # 
9 # Thermostat parameters 

10 # temperature tau     viscosity (eta) 
11   4.27D-21    2.0D-8  0.005 
12 # 
13 # Microtubule parameters 
14 # Nm   Lpolymer  LoverLp     scale 
15   64   8.0D-6    1.7D-2      1.0D8 
16 # Motor parameters 
17 # celldim  Motor density (#/micron^2)   Ratio of dead motors 
18   128      10.0                         0.0 
19 # Rcap    v_unload  f_stall  Kmotor  Lmotor  f_cut 
20   1.0D-8  5.0D-7    5.0D-12  2.0D-4  0.0D0  2.5D-12 
21 # Write motor conf. (1=yes, 0=no) 
22 0 

 

 

Table 18 contains a sample of the parameter data file generated by an Assay code 

run. This file only contains parameter output, the actual data files are written to the data 

directory and do not have any significant meaning to discuss here. 

 Table 18 Assay Code Output Data File 
 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
 
10 
11 

Parameters: 
 =========== 
 Linear system size (micron) = 16.25     
# of cells per dimension =128 
 L/L_p =  0.0170             L (micron) =  8.00E+00 
 # of beads =  64 # of motors=  634 
 Capture radius (nm) =  10.00 Eq. stalk length (nm) =   0.00 
 Stall force (pN) =   5.00    Unloaded velocity (micron/sec)=   0.50 
 Spring constant = 0.0002   F_cut (pN)=   2.50 
 Dead motor %= 0.000 
 Motor density (#/micron^2)= 10.0000 
 
 Equilibration completed 
 End: total=   4840.000      user=   4687.000      system=   153.0000 



79 | P a g e  
 

x Line 1: This is the side length of the simulation box (shown in Figure 42). 

x Line 2: The nearest distance to check for motor binding. 

x Line 3: Length divided by persistence length of a microtubule. Persistence length 

Lp is a measure of how much a given filament, whether microtubule or not, 

persists in a given direction.  L(micron) is the length of a microtubule. 

x Line 4: Discretization of the microtubule. There are 64 nodes on the tube itself.  

x Line 5: The capture radius is the distance in which a motor will bind. The stalk 

length is the rest length of the spring.  

x Line 6: Stall force is the force that will stop a motor. The unloaded velocity is the 

fastest speed a motor can go.  

x Line 7: This is the compliance of the motor linkage modeled b\ Hooke¶s law. Fcut 

is the force that goes into the detachment rate of a motor.  

x Line 8: The percentage of dead motors on a surface. 

x Line 9: The motor density. 

x Line 11: The user value is the time in seconds that the CPU took to process the 

job; the system value is the time in seconds that the job devoted to data transfer; 

the total is the total time in seconds for the job to run. 

 
  



80 | P a g e  
 

6.3 WOPPR Cluster Testing and Results (full 10 nodes) 

The original cluster we built consisted of 10 nodes and the frontend. As shown in 

Appendix A, all of the nodes except two had 3.4 GHz processors and 2 Mb of L2 cache. 

Before starting the testing, the theoretical peak performance (Rpeak) for the system had to 

be determined. Rpeak is calculated by multiplying the total number of processor cores, the 

processor clock frequency, and the theoretical number of double precision floating point 

(FP) results that the processor can process per clock tick.  

 ௣௘௔௞ ൌ   ௖௢௥௘௦     ௙௥௘௤        (2) 

Equation 2 Theoretical Peak Performance 
 

The Pentium 4 has 128-bit FP MUL and FP ADD units, both of which can accept 

either a packed or scalar operation every other cycle. Both the ADD and MUL execution 

units (EUs) are located on the same port which can dispatch just one of either the ADD or 

MUL packed or scalar operations per cycle. Therefore, peak FP operations throughput is 

one 64-bit FP MUL + one 64-bit FP ADD per cycle (4 SP or 2 DP FLOPS). But, to 

achieve it, packed 128-bit instructions must be used. If the code is not vectorized, then 

just one scalar (either ADD or MUL) FP operation can be dispatched per clock tick on 

the P4. 

     ൌ  ௖௢௥௘          ி௉௢௣௦ ൌ                 DP (3) 

Equation 3 WOPPR Theoretical Peak for Single Node 

 
Cluster Rpeak =                         

ൌ             ൅  ௖௢௥௘           ி௉ ൌ             DP (4) 
Equation 4 WOPPR Theoretical Peak for 10 Nodes 

 



81 | P a g e  
 

The first round of testing of the original cluster used the settings listed in table 19 

below and was performed on all 10 nodes. The settings below were fixed for the initial 

testing while the matrix size, block size, and process-grid size and configurations were 

changed to obtain initial empirical data. Figure 44 below provides a key to simplify 

viewing the data result codes. 

           Table 19 Phase 1, Test 1 Parameters 
16.0               threshold 
1                  # of panel fact 
2                  PFACTs (0=left, 1=Crout, 2=Right) 
1                  # of recursive stopping criterium 
4                  NBMINs (>= 1) 
1                  # of panels in recursion 
2                  NDIVs 
1                  # of recursive panel fact. 
1                  RFACTs (0=left, 1=Crout, 2=Right) 
1                  # of broadcast 
1                  BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM) 
1                  # of lookahead depth 
1                  DEPTHs (>=0) 
2                  SWAP (0=bin-exch,1=long,2=mix) 
64                 swapping threshold 
0                  L1 in (0=transposed,1=no-transposed) form 
0                  U  in (0=transposed,1=no-transposed) form 
1                  Equilibration (0=no,1=yes) 
8                  memory alignment in double (> 0) 

 
Figure 44 HPL Output data key. 



82 | P a g e  
 

 

6.3.1 WOPPR Cluster, First Tests 

Parameters: The process-grid was a 2x5 matrix, of matrix size N = 46336, and 

varying NB from 32 ± 128.  

 
Figure 45 Original cluster, phase 1, test 1. 

Another test was run at NB=64 to verify the high Rmax value. Rmax = 30.15 Gflops 

6.3.1.1 WOPPR Cluster,  Single Core Test 

A single core test was run on the cluster to validate the calculated Rpeak of 

Equation 3. The test was run with a process grid of 1x1, NB = 64, and N = 1640. The 

resulting node performance (Rmax) was 4.84 Gflops.  

Computer efficiency (compEff) is the ratio of cluster performance to the 

theoretical peak performance. 

       ൌ   ௠௔௫  ௣௘௔௞         (5) 
Equation 5 Computer Efficiency 

32 44 64 84 104 128

Gflops 29.18 29.68 30.09 30.09 30.00 29.25

28.60

28.80

29.00

29.20

29.40

29.60

29.80

30.00

30.20

G
flo

ps

Performance with Varying NB



83 | P a g e  
 

 

Single node computer efficiency was: 

       ൌ         ൗ     ൌ        Single Node  (6) 

Equation 6 WOPPR Single Node Computer Efficiency 

 

6.3.3 Original Cluster, Parameter Tuning 

After obtaining some initial results, we gathered some data in order to determine 

the impact of the major contributing parameters, process grid size, process grid geometry, 

and blocking size (NB).  

First we ran a test with multiple N values on a fixed matrix of 2 x 5 and NB = 

128. This verified that the largest obtainable Rmax was found at the maximum N value. 

These results are shown in Figure 46. 

 
Figure 46 Original cluster, multiple N, NB=128, 2x5 matrix. 

0.71

4.90
7.63

16.25

22.79

27.64
29.81

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

1000 5000 10000 20000 30000 40000 46336

G
flo

ps

Matrix Size (N)

Original Cluster Rmax

WR11C2R4



84 | P a g e  
 

 

 We then ran two sets of tests to vary the NB values with N fixed at 46336 and 

matrices of 2 x 5 and 3 x 3. Results are shown in Figures 47 and 48. 

 
Figure 47 Original cluster, multiple NB, N=46336, 2x5 

 
Figure 48 Original cluster, multiple NB, N=46336, 3x3 

29.08

30.05 30.07 30.18 30.28
29.97

29.51

28.00

28.50

29.00

29.50

30.00

30.50

32 48 64 80 96 112 128

G
flo

ps

Blocking Sizes (NB)

Original Cluster Rmax
Varying NB, N = 46336, 2 x 5

WR11C2R4

24.02

24.81
25.04 25.11

25.33 25.27 25.26

23.00

23.50

24.00

24.50

25.00

25.50

32 48 64 80 96 112 128

G
flo

ps

Blocking Sizes (NB)

Original Cluster Rmax
Varying NB, N = 46336, 3 x 3

WR11C2R4



85 | P a g e  
 

Since these processors have hyperthreading, we changed the machinefile used 

with HPL.dat to reflect the two processes per core. The modified file is shown in Table 

20.  

Table 20 Modified Machinefile for Hyperthreading 
compute-0-0 
compute-0-0 
compute-0-1 
compute-0-1 
compute-0-2 
compute-0-2 
compute-0-3 
compute-0-3 
compute-0-4 
compute-0-4 
compute-0-5 
compute-0-5 
compute-0-6 
compute-0-6 
compute-0-7 
compute-0-7 
compute-0-8 
compute-0-8 
compute-0-9 
compute-0-9 

 

Two tests were run at maximum N = 46336, NB = 64, and a matrix of 4 x 5. 

Comparing the results shown in Figure 49 with those shown earlier in Figures 46 & 47 

clearly shows that with hyperthreading turned on, we experienced a drop in Rmax of 

~13%. This is due to the processors having to share the 2GB of local memory on each 

node between the two processes being run by each core. 



86 | P a g e  
 

 
Figure 49 Original cluster, 4x5 matrix using Hyperthreading 

 

6.3.4 WOPPR Cluster Results (10 nodes) 

As stated earlier in the discussion of HPL, the major factors affecting the 

benchmark results are the matrix size (N), the Blocking Size (NB), and the matrix 

configuration (P x Q). For our initial testing of the cluster the best results were obtained 

with the following major parameters: 

x N = 46336, an N value that used 80% of the available memory in the 

cluster. 

x NB = 96 

x (P x Q) of (2 x 5) 

These settings resulted in an Rmax of 30.28 Gflops. This is a compEff of 45.1%. 

All testing up to this point was done with the remaining tuning parameters at 

WR11C2R4.  

26.16 26.01

0.00
5.00

10.00
15.00
20.00
25.00
30.00

64 64

G
flo

ps

Blocking Size (NB)

Original Cluster
N=46336, 4 x 5

2 Processes/core

WR11C2R4



87 | P a g e  
 

The second phase of the testing is the Assay code tests. These tests create very 

large amounts of data (in the 100s of GB) and the original cluster frontend had a hard 

drive capacity of 80GB. The decision to replace the frontend was made instead of 

upgrading the hard drive. The specifications of the new frontend are included in Table 9 

and Appendix A.  

 

6.4 WOPPR 8-node Testing for Comparison with Apple Xserve 

At the same time that we were replacing the frontend on the cluster, we were also 

able to obtain an Apple Xserve for testing. The Xserve had two Xeon quad core 

processors giving it 8 cores. To allow as much of a direct comparison as possible we 

removed WOPPR nodes 4 and 6 from the machinefile leaving 8 nodes (8 cores). The two 

nodes removed were the 3.2GHz processors.  

A similar test plan was followed between the WOPPR using the new frontend and 

8 nodes and the Apple Xserve that also has 8 cores. The testing and results are detailed in 

the following sections. 

  



88 | P a g e  
 

6.4.1 WOPPR Determining the Effect of Matrix Size 

Starting with an N value of 41344 (approximating 80% memory usage) and a 

matrix distribution of 2 x 4, we ran testing to verify the overall effects of matrix sizes on 

the Rmax. The results are shown in Figure 50. The Rmax = 19.97.  

 

 
Figure 50 WOPPR determining the effect of N size. 

 

  

0.66

5.03
6.53

8.52

10.82

13.23
15.23

16.97
18.77

19.97

0.00

5.00

10.00

15.00

20.00

25.00

1000 6000 8000 11000 15000 20000 25000 30000 36204 41344

G
flo

ps

Matrix Sizes (N)

Rmax

Rmax



89 | P a g e  
 

6.4.2 WOPPR Parameter Tuning 
The first step in the parameter tuning for the WOPPR was to take the maximum  

N = 41344 and run tests across a range of NB values to determine the maximum NB 

effect. The results are shown below in Figure 51. The optimum NB value is 208. 

 

 
Figure 51 WOPPR determining the optimum NB value. 

 

Using the values N = 41344 and NB = 208, the fine parameters were set up for a 

recursive test. The results are shown in Figure 52. The resolution of data points produced 

by HPL at the matrix size used was only 2 decimal places. At this resolution 7 of the nine 

results were identical.  

 

18.60

18.80

19.00

19.20

19.40

19.60

19.80

20.00

20.20

32 44 64 84 104 128 144 160 176 192 208 224 240 256

G
flo

ps

Blocking Sizes (NB)

Determining the Effect of NBs on Rmax

Rmax/NB



90 | P a g e  
 

 
Figure 52 WOPPR parameter tuning. 

 

The theoretical peak performance for the cluster is 54.4 Gflops as calculated 

below.  

     ൌ  ௖௢௥௘          ி௉௢௣௦ ൌ                 

Cluster Rpeak =                        ൌ              

 

The measured performance (Rmax) is 20.08 Gflops. Calculating the computer 

efficiency we get: 

       ൌ           ൗ     ൌ         

 

  

20.06

20.07

20.07

20.07

20.07

20.07

20.08

20.08

20.08

20.08
Ax

is
 T

itl
e

Axis Title

Effect of Tuning Parameters on Rmax

Rmax



91 | P a g e  
 

6.4.3 WOPPR Assay Testing 
The first set of Assay code testing runs was performed with hyperthreading turned 

off (through Sun Grid Engine) and the motor writing configuration turned off. Having the 

motor writing turned off removes the overhead of the network and allows comparison to 

the CPU dependent results only. The results are shown in Figure 53.  

 

 
Figure 53 WOPPR Assay run, 8 nodes, no motor writing. 

 
The following tests were done with the motor writing turned off and then with 

motor writing turned off. The graph in Figure 54 shows the results for the single thread 

tests including the total time values which incorporate the network transfer times.  

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

7000.0

8000.0

1.25E+05 1.25E+04 1.25E+03

CP
U

 T
im

e,
 se

co
nd

s

Step Interval

WOPPR Assay Run, No Motor Writing

Assay Run



92 | P a g e  
 

 
Figure 54 WOPPR Assay comparison with and without motor writing. 

 
 

 

Hyperthreading was re-enabled in Sun Grid Engine for the following tests. The 

motor writing configuration was turned off for the first group and turned on for the 

second group. The combined chart is provided in Figure 55 for easy comparison of the 

data. The results also show the total test time for the runs using two threads per core. The 

network transfer time is included.  

 

0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

14000.0

1.25E+05 1.25E+04 1.25E+03

CP
U

 T
im

e,
 se

co
nd

s

Step Interval

WOPPR Assay Run, Single Thread/Core

No Writing

Writing

Total Time



93 | P a g e  
 

 
Figure 55 WOPPR Assay comparison with two threads/core. 

 

 

6.4.4 WOPPR Testing Results 

Using 8 nodes of the WOPPR Cluster, we achieved a peak performance (Rmax) of 

20.08 Gflops and computer efficiency (compEff) of 36.9%. This differs from the original 

cluster by ~17%. While the difference between the original frontend CPU and the CPU of 

the new frontend is ~17% this is needs more investigation to prove a direct correlation. 

One aspect of the continued work should be to evaluate the changes caused by 

recompiling the benchmark software on different systems.  

 

 

 

0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

14000.0

16000.0

1.25E+05 1.25E+04 1.25E+03

CP
U

 T
im

e,
 se

co
nd

s

Step Interval

WOPPR Assay Run, Two Threads/Core

No Writing

Writing

Total Time



94 | P a g e  
 

6.5 Apple Xserve Testing and Results 

The Xserve specifications are listed in Table 21 below. It is configured as a 

standalone server node running on OS X. This means that it does not have a frontend to 

control it but rather runs its own server software on itself. This configuration has some 

benefits and some drawbacks. The biggest benefits are that there are no interconnections 

between nodes to create bottlenecks for data transfer if all of the processes have the 

benefit of using the QPI interconnects for message passing and the processors share 

memory across the interconnects. The biggest drawback to this configuration is that the 

server is standalone which means that it has the overhead of running all the normal 

services, the server software, and has to handle the processing of jobs. Overall the 

benefits outweigh the drawbacks, as clearly shown in the data collected.  

           Table 21 Apple Xserve Specifications 

Apple Xserve 
 

Processor Quad Core Intel Xeon 5520 
Clock Speed 2.26 GHz 
Bus Speed 5.86 GT/s (QPI Interconnects) 
L2 Cache 256Kb/core (2MB) 
Memory 12GB 
Memory Speed 1066MHz 

 

The Xeon 5520 is a Nehalem design CPU which means that its FP peak 

performance was doubled from that of the P4 architecture by adding 128-bit FP ADD and 

FP MUL EUs on different ports working with 1 cycle throughput. This gives it a peak FP 

throughput for vectorized code of 2 64-bit MUL and 2 64-bit ADD operations per cycle 

(8 SP or 4 DP Flops). Calculating the peak performance for this Xserve server give us: 

     ൌ  ௖௢௥௘           ி௉௢௣௦ ൌ                  



95 | P a g e  
 

Server Rpeak =                        ൌ               

6.5.1 Xserve - Determining the Effect of Matrix Size 

The Xserve machine was on loan to us for testing purposes. Due to the limited 

time that we had available, we started the initial data runs incorporating a wide range of 

parameters to test. The parameters specified are shown in Table 22 below. With multiple 

NBMINs, PFACTs, and RFACTs in effect, the testing recursively tested all combinations 

of the parameters.  The maximum (80%) setting for N is: 

 ൌ ඨ
         ሺ  ሻ

 
ൌ       

The results shown in Figure 56 are the Rmax for the various matrix sizes tested 

without regards to the finer tuning parameters.  

Table 22 Xserve Initial 2x4 Testing Parameters 
NB : 128       
PMAP : Row-major process mapping   
P : 2       
Q : 4       
PFACT : Left Crout Right   
NBMIN : 2 4     
NDIV : 2       
RFACT : Left Crout Right   
BCAST : 1ring       
DEPTH : 0       
SWAP : Mix (threshold = 64) 
L1 : transposed form     
U : transposed form     
EQUIL : yes       
ALIGN : 8 double precision words 



96 | P a g e  
 

 
Figure 56 Apple Xserve Gflops for 2x4 matrix. 

 

As seen in Figure 51, the 80% maximum matrix size (N) is clearly the most 

efficient setting. 

6.5.2 Xserve Parameter Tuning 

The effect of varying the finer tuning parameters was noticeably obvious for this 

machine. Starting at the lower N values a definite pattern showed itself alternating 

between values of NBMIN. These NBMIN values determine when the recursive panel 

factorization will stop. When the current panel being factorized has less than or equal 

columns to the NBMIN value then the recursion stops. As shown in Figure 57 as the 

NBMIN value alternates between 2 and 4 the results vary by more approximately 5%. 

0.00

5.00

10.00

15.00

20.00

25.00

5000 10000 15000 20000 30000 35840

G
Fl

op
s

Matrix Size (N)

Xserver - 2x4 matrix

Gflops



97 | P a g e  
 

However, when the matrix size reaches its maximum value (80% of total memory) the 

effect is almost totally damped.  

 
Figure 57 Apple Xserve tuning, NBMIN effect, N=5000. 

0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73
C2

C2

C2
C4

C2
L2

C2
L4

C2
R2

C2
R4

L2
C2

L2
C4

L2
L2

L2
L4

L2
R2

L2
R4

R2
C2

R2
C4

R2
L2

R2
L4

R2
R2

R2
R4

G
flo

ps

Tuning Parameters

N = 5000

Gflops



98 | P a g e  
 

 
Figure 58 Apple Xserve tuning, NBMIN effect, N=10000 

 
Figure 59 Apple Xserve tuning, NBMIN effect is damped. 

2.45

2.50

2.55

2.60

2.65

2.70

2.75

2.80

C2
C2

C2
C4

C2
L2

C2
L4

C2
R2

C2
R4

L2
C2

L2
C4

L2
L2

L2
L4

L2
R2

L2
R4

R2
C2

R2
C4

R2
L2

R2
L4

R2
R2

R2
R4

G
flo

ps

Tuning Parameters

N = 10000

Gflops

0.00

5.00

10.00

15.00

20.00

25.00

C2
C2

C2
C2

C2
C4

C2
C4

C2
L2

C2
L2

C2
L4

C2
L4

C2
R2

C2
R2

C2
R4

L2
C2

L2
C2

L2
C4

L2
C4

L2
L2

L2
L2

L2
L4

L2
L4

L2
R2

L2
R2

L2
R4

L2
R4

R2
C2

R2
C4

R2
L2

R2
L4

R2
R2

R2
R4

G
flo

ps

Tuning Parameters

Xserve 
N = 35840

Gflops



99 | P a g e  
 

After evaluation of all the tuning parameter combinations, the RFACT/PFACT 

and NDIV/NBMINs contributing to the highest Rmax is a combination of L2L2. Most of 

the data points making up Figure 51 have the L2L2 combination.  

The computer efficiency for the server tested on the 2 x 4 matrix is: 

       ൌ            ൗ     ൌ         

We continued on with our test plan to see if we could identify a reason for such a 

low efficiency. The next set of tests used a fixed NB of 128 and the maximum N of 

35840 while varying the matrix (P x Q) configuration through 2 x 4, 1 x 4, and 4 x 1. 

 
Figure 60 Apple Xserve performance by matrix configuration. 

 

Figure 60 shows a remarkable leap in Rmax for both the 1 x 4 and the 4 x 1 

configurations. This is possibly caused by having all of the processors and memory on 

the same motherboard with all message passing occurring through the interconnects. 

37.38

44.88

21.07

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

1x4 4x1 2x4

G
flo

ps

(P x Q) Matrix Configuration

Xserve Performance by Matrix Configuration

Gflops



100 | P a g e  
 

The HPL algorithm distributes data onto a P-by-Q grid of processes. Each CPU in 

the Xserve has 4 cores so a PxQ distribution of 1 x 4 or 4 x 1 would only span one CPU 

in one case and only 2 cores of each CPU in the other case. In the first instance, the 

efficiency would increase due to the fact that communications are not needed between 

CPUs and in the second case, efficiency would increase due to two processes per core 

having full use of the QPI links and the full amount of RAM 

The results for the 1x4 and 4x1 matrix distributions are higher than theoretical 

limits for the specified matrix sizes. This could be due to the problems associated with 

configuring HPL to run on a single server node. Since the server node is no longer 

available for testing, no validation can be completed within the time limits of the project. 

Continuing work should include testing of a single server node configuration to validate 

HPL response. The computer efficiency measured now is: 

 

        ൌ            ൗ     ൌ         

 

The Xeon processors have hyperthreading giving the server a total of 16 process 

threads (2 threads/core). Since this server is self contained and not a frontend/node 

configuration, there is no machinefile to edit. The threads are handled by using openMP 

directives to set the number of threads available. The results for the 16-thread tests are 

shown below in figure 61. The 1 x 4 matrix has been included for direct comparison. The 

difference in efficiency is caused by the memory sharing that takes place in the HPL 

process. This creates a bottleneck to the throughput. 



101 | P a g e  
 

 
Figure 61 Apple Xserve 16-thread performance by matrix configuration. 

  

44.88

15.29
17.98

10.92

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

4x1 4x4 2x8 8x2

G
flo

ps

(P x Q) Matrix Configuration

Xserve Performance by Matrix Configuration

Gflops



102 | P a g e  
 

6.5.3 Xserve Assay Testing 

The Xserve server was used to make 3 test runs with different step time values 

and motor configuration writing turned off. The results are shown in Figure 63.  

 
Figure 62 Apple Xserve Assay testing results. 

 

6.5.4 Xserve Results Summary 

The Xserve has a calculated Rpeak of 72.32 Gflops. During the HPL benchmark 

testing we were able to tune the tests to obtain an Rmax = 44.88 Gflops and a compEff = 

62.1%.  

  

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1.25E+03 1.25E+04 1.25E+05

Ti
m

e 
in

 se
co

nd
s

Step Time in seconds

Assay Data Runs
w/out motor writing

CPU Time

Total Job Time



103 | P a g e  
 

6.6 Conclusion 

After completing the testing of the WOPPR and the Xserve we had three groups 

of data for comparison; 1) The WOPPR Cluster with the original frontend, 2) The 

WOPPR Cluster with the new frontend, and 3) The Xserve. The theoretical Rpeak and the 

measured Rmax are shown in Table 23. The summary of data from the Assay code is 

provided below in Table 24.  

The expected difference between the testing done with WOPPR on the original 

frontend using all 10 nodes and the new frontend using only 8 nodes is ~19%. The actual 

difference between frontend configurations was ~33.7%. The difference of 14.7% was 

verified with additional data collection. The research concerning this difference should be 

conducted in continuing work on this project. Some possible reasons for the discrepancy 

are:  

- Differences in compiling HPL with different CPU architectures. 

- Differences in compiling GotoBLAS2 with different CPU architectures. 

- Differences in compiling MPICH2 with different CPU architectures. 

 

The real-world testing results involving the Assay code are shown in Table 24 

below. As shown, the WOPPR cluster provided better results than the Xserve when 

operating in single thread mode due to the higher clock speeds of the node processors. 

However, when run with hyperthreading enabled (2 processes per core) the added 

overhead involved with shared memory on the WOPPR increased the data run by more 

than 80%.  

  



104 | P a g e  
 

Table 23 Testing Summary for HPL Data 
HPL Data Rpeak (Gflops) Rmax (Gflops)/ compEff(%) 

WOPPR (original frontend) 67.2 30.28/45.1% 
WOPPR (new frontend) 54.4 20.08/36.9% 
Xserve 72.3 44.88/62.1% 
 
 
Table 24 Testing Summary for Gliding-Assay Data 

Assay Data Peak (minimum time in 
seconds) 

Average (time in 
seconds) 

WOPPR (no hyperthreading) 7,149 7,236 
WOPPR (hyperthreading) 12,754 12,823 
Xserve 8,183 8,220 
 

 

 

 

  



105 | P a g e  
 

Chapter 7: Conclusion and Recommendations 

A cluster computer (the WOPPR) was successfull\ built from µoutdated¶ reuse 

computers being recycled at WPI. The computational speed of the cluster was proven to 

be faster than a mainstream server node when operating in single thread mode on single 

process multiple data programming for a computational physics application. This project 

has demonstrated that there are viable and productive uses for clusters such as the 

WOPPR.  

The decision to use a cluster built from reuse computers would have to be made 

on a case-by-case basis depending on variables such as the type of programming to be 

used, the space available, the power available, and the number of process threads 

required.  

The cost of using reuse computers is limited to the peripheral items that would be 

added on when building the cluster, such as a new network switches, cables, etc. , and the 

electrical power to run the cluster. In comparison with the purchase of a new cluster 

computer, the initial costs for a reuse cluster are far more economical.  

When planning a cluster, the type of programming to be run is an important 

consideration. An older technolog\ such as the Pentium 4¶s used in the WOPPR are ideal 

for single instruction multiple data processing where multiple cases of the same 

instruction need to run simultaneously. For a cluster such as this, the main limiting factor 

would most likely be the space considerations in the area that the cluster is built. As 

shown in Figure 63, over 90% of registered rocks clusters have less than 170 processors 

[32]. The top 7 outliers are not included in Figure 63.    



106 | P a g e  
 

The Rocks Cluster operating system was chosen for the WOPPR since it is a 

robust platform for running clusters and provides the tools necessary for running parallel 

as well as serial code. The included Sun Grid Engine is a popular and functional front-

end management system for submitting and monitoring cluster jobs.  

While this project was successful in setting up, configuring, and testing a cluster 

capable of continued use in computational research, there are some areas of future 

research that were either beyond the scope of the project or outside of the time allotted 

for the project. These items are recommended for continued work. 

The first recommendation is to test and evaluate the changes caused by 

recompiling the HPL benchmark software on different CPU architectures, with attention 

to CPU speed, front side bus speed, L2 cache, and the speed of the RAM.  

The second recommendation is to test and quantify the effects on HPL results, of 

recompiling the linear algebra system and message passing software on different CPU 

architectures  

The final recommendation is to conduct further testing of the HPL benchmarks on 

single server nodes with multiple processors capable of hyperthreading to determine the 

behavior of the benchmark software. This should include varying matrix distribution 

configurations.  

 



107 | P a g e  
 

 
Figure 63 Registered Rocks Cluster Sizes 

  

0

500

1000

1500

2000

2500

3000

1 122 243 364 485 606 727 848 969 1090 1211 1332

# 
of

 P
ro

ce
ss

or
s

# of Registered Clusters

CPUs

CPUs



108 | P a g e  
 

 

References 
 
[1] History of Cluster Computing, http://cunday.blogspot.com/2009/01/history-of-cluster-computing.html, 
(accessed 7/7/2010) 
[2] Beowulf Project Overview, http://www.beowulf.org/overview/history.html, (accessed 7/20/2010) 
[3] Top 500 Supercomputers, http://www.top500.org/lists, (accessed 7/7/2010) 
[4] Intel Corporation, http://h41201.www4.hp.com/tradein/html/910/dk/da/intel_case_study.pdf  
[5] Gartner Says More than 1 Billion PCs In Use Worldwide and Headed to 2 Billion Units by 2014, 
http://www.gartner.com/it/page.jsp?id=703807 , (accessed 7/20/2010) 
[6] Gartner press releases, April 15, 2009, July 16, 2009, October 14, 2009, January 13, 2010, 
http://www.gartner.com/it/page.jsp?id=939015, http://www.gartner.com/it/page.jsp?id=1076912, 
http://www.gartner.com/it/page.jsp?id=1207613, http://www.gartner.com/it/page.jsp?id=1279215, 
(accessed 7/29/2010) 
[7] Statistics on the Management of Used and End-of-Life Electronics, July 2008, 
http://www.epa.gov/epawaste/conserve/materials/ecycling/manage.htm, (accessed on 7/29/2010) 
[8] Basel Conference Addresses Electronic Wastes Challenge, Press release from United Nations 
Environment Programme, 
http://www.unep.org/documents.multilingual/default.asp?DocumentID=485&ArticleID=5431&l=en, 
(accessed on 7/29/2010) 
[9] Moor¶s Law, http://www.intel.com/technology/mooreslaw/index.htm, (accessed 10/6/2010) 
[10] U.S. Environmental Protection Agency, Wastes-Resource Conservation-Common Wastes and 
Materials-eCycling website, http://www.epa.gov/osw/conserve/materials/ecycling/donate.htm#local, 
(accessed 8/9/2010) 
[11] XServe Performance, http://www.apple.com/xserve/performance.html, (accessed on 1/26/2010) 
[12] U.S Energy Information Administration Independent Statistics and Analysis 
http://www.eia.doe.gov/cneaf/electricity/epm/table5_6_a.html 
[13]G. F. Pfister, In Search of Clusters, 2nd Edition, Prentice Hall, 1998. 
 
[14] Prime95, http://files.extremeoverclocking.com/file.php?f=103 
[15] OCCT, http://www.ocbase.com/perestroika_en/index.php 
[16] http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0438741, (accessed 9/30/2010) 
[17] http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0721623, (accessed 9/30/2010) 
[18] http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1032778, (accessed 9/30/2010) 
[19] Tools and Techniques for Easily Deploying Manageable Linux Clusters,  
http://www.rocksclusters.org/rocks-doc/papers/ieee-cluster-2001/paper.pdf, (accessed 1/20/2010) 
[20] Rocks Cluster homepage, http://www.rocksclusters.org/wordpress/?page_id=114, (accessed 
10/4/2010) 
[21] Rocks Cluster downloads, http://www.rocksclusters.org/wordpress/?page_id=114, (accessed 
10/5/2010) 
[22] The ganglia distributed monitoring system: design, implementation, and experience. Massie, Chun, 
and Culler, February 2003 
[23] Open Source Tripwire, http://sourceforge.net/projects/tripwire/, (accessed 10/5/2010) 
[24] Chkrootkit, http://www.chkrootkit.org/, (accessed 10/5/2010) 
[25] MPI-2 Message Passing Interface Forum, http://www.mpi-forum.org/, (accessed 9/16/2010) 
[26] Kazushige Goto, Author of GotoBLAS, http://en.wikipedia.org/wiki/Kazushige_Goto, (accessed 
10/6/2010) 
[27] Texas Advanced Computing Center, http://www.tacc.utexas.edu/tacc-projects/gotoblas2/downloads/, 
(accessed 2/15/2010) 
[28] Top500 SuperComuters, http://www.top500.org/, (accessed 10/5/2010) 
[29] Netlib.org HPL software page, http://www.netlib.org/benchmark/hpl/software.html, (accessed 
10/6/2010) 



109 | P a g e  
 

[30] Intel Math Kernel Library, http://software.intel.com/en-us/intel-mkl/, (accessed 10/6/2010) 
[31] K. Singh, E. Ipek, S. A. McKee, B.R. de Supinski, M. Schulz, and R. Caruana. Predicting parallel 
application performance via machine learning approaches. Concurrency And Computation: Practice and 
Experience, 19(17): 2219-2235, 2007. 
[32] The Rocks Cluster Register, http://www.rocksclusters.org/rocks-
register/index.php?sortby=CPUs&sortorder=down, (accessed 10/19/2010) 

  



110 | P a g e  
 

APPENDIX 

APPENDIX A: Computer Specifications 
Node woppr-0-0 woppr-0-1 woppr-0-2 woppr-0-3 woppr-0-4 woppr -0-5 

Bios 
Version 

A07 A07 A07 A11 A05 A07 

Bios Date 3/31/2006 3/31/2006 3/31/2006 11/30/2006 10/13/2005 3/31/2006 
Service Tag CDXF0B1 FCXF0B1 GDXF0B1 7GXF0B1 BH0CY81 JCXF0B1 
Processor Pentium 4 

Prescott 
Dt, 640 

Pentium 4 
Prescott Dt, 

640 

Pentium 4 
Prescott 
Dt, 640 

Pentium 4 
Prescott Dt, 

640 

Pentium 4 
Prescott Dt, 

640 

Pentium 4 
Prescott 
Dt, 640 

Clk Spd 3.4 GHz 3.4 3.4 3.4 3.2 3.4 
Bus Spd 800 MHz 800 MHz 800 MHz 800 MHz 800 MHz 800 MHz 
L2 Cache 2 Mb 2 Mb 2 Mb 2 Mb 2 Mb 2 Mb 
Proc ID 0F43 0F43 0F43 0F43 0F43 0F43 
Memory 2Gb 2Gb 2Gb 2Gb 2Gb 2Gb 
Mem Spd 533 MHz 533 MHz 533 MHz 533 MHz 533 MHz 533 MHz 
Dim 1 1024MB 1024MB 1024MB 1024MB 1024MB 1024MB 
Dim 2 1024MB 1024MB 1024MB 1024MB 1024MB 1024MB 
Node Original 

Frontend 
New 
Frontend 

woppr-0-6 woppr-0-7 woppr-0-8 woppr-0-9 

Bios 
Version 

  401 A01 A07 A07 A07 

Bios Date   12/30/2009 5/24/2005 3/31/2006 3/31/2006 3/31/2006 
Service Tag BW75181   GFTFW71 DFXF0B1 2FXF0B1 1XWF0B1 
Processor Pentium 4 

Prescott 
Dt, 640 

Core 2 Quad 
Q8400 

Pentium 4 
Prescott 
Dt, 640 

Pentium 4 
Prescott Dt, 

640 

Pentium 4 
Prescott Dt, 

640 

Pentium 4 
Prescott 
Dt, 640 

Clk Spd 3.2 GHz 2.66GHz 3.2 3.4 3.4 3.4 
Bus Spd 800 MHz 1333 MHz 800 MHz 800 MHz 800 MHz 800 MHz 
L2 Cache 2 MB 4096 KB 1Mb 2 Mb 2 Mb 2 Mb 
Proc ID 0F43 1067A 0F41 0F43 0F43 0F43 
Memory 2 Gb 4 Gb 2Gb 2Gb 2Gb 2Gb 
Mem Spd 533 MHz   533 MHz 533 MHz 533 MHz 533 MHz 
Dim 1 512 MB   1024MB 1024MB 1024MB 1024MB 
Dim 2 512 MB   1024MB 1024MB 1024MB 1024MB 
Dim 3 512 MB       
Dim 4 512 MB       

 

  



111 | P a g e  
 

APPENDIX B: Extend-Compute.xml File 
<?xml version="1.0" standalone="no"?> 
 
<kickstart> 
 
<description> 
 
        A skeleton XML node file. This file is a template and is intended 
        as an example of how to customize your Rocks cluster. Kickstart XML 
        nodes such as this describe packages and "post installation" shell 
        scripts for your cluster. 
 
        XML files in the site-nodes/ directory should be named either 
        "extend-[name].xml" or "replace-[name].xml", where [name] is 
        the name of an existing xml node.  
 
        If your node is prefixed with replace, its instructions will be used 
        instead of the official node's. If it is named extend, its directives 
        will be concatenated to the end of the official node. 
 
</description> 
 
 
<changelog> 
</changelog> 
 
<main> 
        <!-- kickstart 'main' commands go here --> 
</main> 
 
<pre> 
        <!-- partitioning commands go here --> 
</pre> 
 
 
<!-- There may be as many packages as needed here. Just make sure you only 
     uncomment as many package lines as you need. Any empty <package></package> 
     tags are going to confuse rocks and kill the installation procedure 
--> 
<package> intel-node-libs </package> 
<package> intel-node-mkl-libs </package> 
<!-- <package> insert 3rd package name here and uncomment the line</package> --
> 
 
 
<post> 
        <!-- Insert your post installation script here. This 
        code will be executed on the destination node after the 
        packages have been installed. Typically configuration files 
        are built and services setup in this section. --> 
 
        <!-- WARNING: Watch out for special XML chars like ampersand, 
        greater/less than and quotes. A stray ampersand will cause the 
        kickstart file building process to fail, thus, you won't be able 
        to reinstall any nodes. It is recommended that after you create an 
        XML node file, that you run: 
 
                xmllint -noout file.xml 
        --> 
 
        <eval shell="python"> 
 



112 | P a g e  
 

                <!-- This is python code that will be executed on the 
                frontend node during kickstart file generation. You may contact 
                the database, make network queries, etc.  These sections are 
                generally used to help build more complex configuration 
                files.  The 'shell' attribute is optional and may point to any 
                language interpreter such as "bash", "perl", "ruby", etc. 
                By default shell="bash".  --> 
 
        </eval> 
 
</post> 
 
</kickstart> 

 
  



113 | P a g e  
 

APPENDIX C: SMC EZNET-16SW Network Switch  

 
  



114 | P a g e  
 

  



115 | P a g e  
 

APPENDIX D: Tripp-Lite Rackmount Surge Suppressor, Model 
IBAR12-20ULTRA 

 



116 | P a g e  
 

APPENDIX  E: HPL Make File Configuration 
[ctclark@woppr hpl]$ cat Make.x86_64  
#   
#  -- High Performance Computing Linpack Benchmark (HPL)                 
#     HPL - 1.0a - January 20, 2004                           
#     Antoine P. Petitet                                                 
#     University of Tennessee, Knoxville                                 
#     Innovative Computing Laboratories                                  
#     (C) Copyright 2000-2004 All Rights Reserved                        
#                                                                        
#  -- Copyright notice and Licensing terms:                              
#                                                                        
#  Redistribution  and  use in  source and binary forms, with or without 
#  modification, are  permitted provided  that the following  conditions 
#  are met:                                                              
#                                                                        
#  1. Redistributions  of  source  code  must retain the above copyright 
#  notice, this list of conditions and the following disclaimer.         
#                                                                        
#  2. Redistributions in binary form must reproduce  the above copyright 
#  notice, this list of conditions,  and the following disclaimer in the 
#  documentation and/or other materials provided with the distribution.  
#                                                                        
#  3. All  advertising  materials  mentioning  features  or  use of this 
#  software must display the following acknowledgement:                  
#  This  product  includes  software  developed  at  the  University  of 
#  Tennessee, Knoxville, Innovative Computing Laboratories.              
#                                                                        
#  4. The name of the  University,  the name of the  Laboratory,  or the 
#  names  of  its  contributors  may  not  be used to endorse or promote 
#  products  derived   from   this  software  without  specific  written 
#  permission.                                                           
#                                                                        
#  -- Disclaimer:                                                        
#                                                                        
#  THIS  SOFTWARE  IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
#  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,  INCLUDING,  BUT NOT 
#  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 
#  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY 
#  OR  CONTRIBUTORS  BE  LIABLE FOR ANY  DIRECT,  INDIRECT,  INCIDENTAL, 
#  SPECIAL,  EXEMPLARY,  OR  CONSEQUENTIAL DAMAGES  (INCLUDING,  BUT NOT 
#  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
#  DATA OR PROFITS; OR BUSINESS INTERRUPTION)  HOWEVER CAUSED AND ON ANY 
#  THEORY OF LIABILITY, WHETHER IN CONTRACT,  STRICT LIABILITY,  OR TORT 
#  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
#  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  
# ###################################################################### 
#   
# ---------------------------------------------------------------------- 
# - shell -------------------------------------------------------------- 
# ---------------------------------------------------------------------- 
# 
SHELL        = /bin/sh 
# 
CD           = cd 
CP           = cp 
LN_S         = ln -s 
MKDIR        = mkdir 
RM           = /bin/rm -f 
TOUCH        = touch 
# 
# ---------------------------------------------------------------------- 



117 | P a g e  
 

# - Platform identifier ------------------------------------------------ 
# ---------------------------------------------------------------------- 
# 
ARCH         = x86_64 
# 
# ---------------------------------------------------------------------- 
# - HPL Directory Structure / HPL library ------------------------------ 
# ---------------------------------------------------------------------- 
# 
TOPdir       = /export/home/ctclark/Desktop/hpl 
INCdir       = $(TOPdir)/include 
BINdir       = $(TOPdir)/bin/$(ARCH) 
LIBdir       = $(TOPdir)/lib/$(ARCH) 
# 
HPLlib       = $(LIBdir)/libhpl.a  
# 
# ---------------------------------------------------------------------- 
# - Message Passing library (MPI) -------------------------------------- 
# ---------------------------------------------------------------------- 
# MPinc tells the  C  compiler where to find the Message Passing library 
# header files,  MPlib  is defined  to be the name of  the library to be  
# used. The variable MPdir is only used for defining MPinc and MPlib. 
# 
MPdir        = /opt/openmpi 
MPinc        = -I$(MPdir)/include 
MPlib        = $(MPdir)/lib/libmpi.so 
# 
# ---------------------------------------------------------------------- 
# - Linear Algebra library (BLAS or VSIPL) ----------------------------- 
# ---------------------------------------------------------------------- 
# LAinc tells the  C  compiler where to find the Linear Algebra  library 
# header files,  LAlib  is defined  to be the name of  the library to be  
# used. The variable LAdir is only used for defining LAinc and LAlib. 
# 
LAdir        = /opt/GotoBLAS2 
LAinc        =  
LAlib        = $(LAdir)/libgoto2.a 
# 
# ---------------------------------------------------------------------- 
# - F77 / C interface -------------------------------------------------- 
# ---------------------------------------------------------------------- 
# You can skip this section  if and only if  you are not planning to use 
# a  BLAS  library featuring a Fortran 77 interface.  Otherwise,  it  is 
# necessary  to  fill out the  F2CDEFS  variable  with  the  appropriate 
# options.  **One and only one**  option should be chosen in **each** of 
# the 3 following categories: 
# 
# 1) name space (How C calls a Fortran 77 routine) 
# 
# -DAdd_              : all lower case and a suffixed underscore  (Suns, 
#                       Intel, ...),                           [default] 
# -DNoChange          : all lower case (IBM RS6000), 
# -DUpCase            : all upper case (Cray), 
# -DAdd__             : the FORTRAN compiler in use is f2c. 
# 
# 2) C and Fortran 77 integer mapping 
# 
# -DF77_INTEGER=int   : Fortran 77 INTEGER is a C int,         [default] 
# -DF77_INTEGER=long  : Fortran 77 INTEGER is a C long, 
# -DF77_INTEGER=short : Fortran 77 INTEGER is a C short. 
# 
# 3) Fortran 77 string handling 
# 



118 | P a g e  
 

# -DStringSunStyle    : The string address is passed at the string loca- 
#                       tion on the stack, and the string length is then 
#                       passed as  an  F77_INTEGER  after  all  explicit 
#                       stack arguments,                       [default] 
# -DStringStructPtr   : The address  of  a  structure  is  passed  by  a 
#                       Fortran 77  string,  and the structure is of the 
#                       form: struct {char *cp; F77_INTEGER len;}, 
# -DStringStructVal   : A structure is passed by value for each  Fortran 
#                       77 string,  and  the  structure is  of the form: 
#                       struct {char *cp; F77_INTEGER len;}, 
# -DStringCrayStyle   : Special option for  Cray  machines,  which  uses 
#                       Cray  fcd  (fortran  character  descriptor)  for 
#                       interoperation. 
# 
F2CDEFS      = -DAdd__ -DF77_INTEGER=int -DStringSunStyle 
# 
# ---------------------------------------------------------------------- 
# - HPL includes / libraries / specifics ------------------------------- 
# ---------------------------------------------------------------------- 
# 
HPL_INCLUDES = -I$(INCdir) -I$(INCdir)/$(ARCH) $(LAinc) $(MPinc) 
HPL_LIBS     = $(HPLlib) $(LAlib) $(MPlib) 
# 
# - Compile time options ----------------------------------------------- 
# 
# -DHPL_COPY_L           force the copy of the panel L before bcast; 
# -DHPL_CALL_CBLAS       call the cblas interface; 
# -DHPL_CALL_VSIPL       call the vsip  library; 
# -DHPL_DETAILED_TIMING  enable detailed timers; 
# 
# By default HPL will: 
#    *) not copy L before broadcast, 
#    *) call the BLAS Fortran 77 interface, 
#    *) not display detailed timing information. 
# 
HPL_OPTS     = 
#  
# ---------------------------------------------------------------------- 
# 
HPL_DEFS     = $(F2CDEFS) $(HPL_OPTS) $(HPL_INCLUDES)  
# 
# ---------------------------------------------------------------------- 
# - Compilers / linkers - Optimization flags --------------------------- 
# ---------------------------------------------------------------------- 
# 
CC           = /usr/bin/gcc 
CCNOOPT      = $(HPL_DEFS) 
CCFLAGS      = $(HPL_DEFS) -fomit-frame-pointer -O3 -funroll-loops -W -Wall 
# 
LINKER       = /usr/bin/gfortran 
LINKFLAGS    = $(CCFLAGS) 
# 
ARCHIVER     = ar 
ARFLAGS      = r 
RANLIB       = echo 
# 
# ---------------------------------------------------------------------- 

 


