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State-Oriented
Programming

he Unified Modeling Language (UML) pro-
vides a number of conceptual and graphical
views for capturing and conveying designs.
Among these views, hierarchical state

machines (HSMs), based on Harel state-

charts, are of key importance and provide the
foundation for automatic code generation from object
models.! Unfortunately, this creates the impression that
the methodology is only accessible through use of code
synthesizing tools. This is similar to the common belief
that object-oriented programming (OOP) is only possi-
ble with object-oriented (OO) languages. However, the
key OO concepts of encapsulation, inheritance, and
polymorphism may be implemented as design patterns?
in a non-OO language such as C. Similarly, hierarchical
state machines can be viewed as another such fundamen-
tal pattern.

From a more abstract perspective, one may view hierar-
chical state machines as a meta-pattern, in that various
structured uses become design patterns (behavioral pat-
terns®) in their own right. This is analogous to OO design
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patterns? built on meta-patterns of inheritance and poly-
morphism. Following this analogy to OOP, we propose the
term  state-oriented programming (SOP) to describe a pro-
gramming style based on HSMs.

The primary goal of this article is to present a simple
and efficient implementation of the HSM design pattern.
By providing easy-to-use C and C++ recipes for generating
HSMs, we hope to make the major benefits of the technol-
ogy more accessible to the software community. The pro-
posed implementation techniques are valuable in that they
raise the level of abstraction and allow for straightforward
mapping of UML statecharts to compact and efficient code
in C or C++. We have used the technique extensively in
deeply embedded, hard real-time RF receiver applications
where both high speed and small memory footprint were
crucial.

In an effort to maximize efficiency and minimize imple-
mentation complexity, many of the more advanced features
of UML statecharts have been omitted. The implemented
features form a proper subset of UML statecharts and
include:




® Nested states with proper handling
of group transitions and group
reactions

® Guaranteed execution of
entry/exit actions upon enter-
ing/exiting states

® Straightforward implementation of
conditional  event
(guards)

® Design that enables inheriting and

specializing state models

responses

More advanced features of UML
statecharts (such as history mecha-
nisms and orthogonal regions) can be
added as behavioral patterns built on
top of the implementation presented
here.

We begin with a brief summary of
approaches that have been document-
ed in the relevant literature or imple-
mented in commercial products. We
then describe our implementation
using UML class diagrams and pro-
vide a complete implementation in
both C and C++. Taking the example
of a simple digital watch, we demon-
strate how to map a UML state dia-
gram to code and how to use most fea-
tures of the HSM implementation in a
concrete fashion. We briefly discuss
how the HSM pattern, when com-
bined with RTOS facilities, can be
used to build a powerful real-time
framework. We conclude by drawing a
comparison between SOP and OOP
and propose some modifications and
extensions to UML statecharts. We
assume that the reader is familiar with
basic concepts of state machines and
UML notation.3:11

Standard approaches
Typical implementations of state
machines in C/C++ include:

® Doubly nested switch statements
with a scalar “state variable” used as

the discriminator in the first level
of the switch and event-type in the
second.? This is, perhaps, the most
common technique and works well
for classical “flat” state machines
and is widely employed by automat-
ic code synthesizing tools.> Manual
coding of entry/exit actions and
nested states is, however, cumber-
some, mainly because code pertain-
ing to one state becomes distrib-
uted and repeated in many places,
making it difficult to modify and
maintain when the topology of
state machine changes

Action-state tables containing typi-
cally sparse arrays of actions and
transitions for each state.* Actions

(including entry/exit, state reac-
tions, and actions associated with
transitions) are most commonly
represented as pointers to func-
tions. Representing state hierarchy
in a flat action-state table is cum-
approach
requires a large (and consequently
wasteful) action/state array and
many fine-granularity functions

bersome. Also, this

representing actions

® Generic “state machine inter-

preters” driven by typically com-
plex data structures that represent
the hierarchy of states together
with entry/exit actions and transi-
tions.6 This is a generalized action-
state table approach that attempts

super
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LISTING 1a

typedef int Event;

typedef struct {
Event evt;

} Msg;

typedef struct Hsm Hsm;
typedef Msg const *(xEvtHndlr)(Hsmx, Msg constx);

typedef struct State State;
struct State {

State *super;

EvtHndlr hndlr;

char const *name;
};

/* pointer to superstate */
/% state's handler function */

void StateCtor(State *me, char const *name,
State *super, EvtHndlr hndlr);
#define StateOnEvent(me_, ctx_, msg )\
(*x(me_)—>hndlr)((ctx ), (msg))
struct Hsm { /* Hierarchical State Machine base class */
char const *name; /* pointer to static name x/
State *curr; /* current state */
State *next; /* next state (non 0 if transition taken) */
State top; /* top—most state object */

};

void HsmCtor(Hsm *me, char const *name, EvtHndlr topHndlr);
void HsmOnStart(Hsm *me);
void HsmOnEvent(Hsm *me, Msg const *msg);

/% enter and start the top state %/
/* "HSM engine" */

/* protected: */
unsigned char HsmToLCA_(Hsm *me, State *target);
void HsmExit_(Hsm *me, unsigned char tolLca);
#define STATE_CURR(me_) (((Hsm *)me_)—>curr)
#define STATE_START(me_, target ) \
(assert((((Hsm *)me )->next = 0),\
((Hsm *)me_)—>next = (target_))

#define STATE_TRAN(me_, target ) if (1) { \
static unsigned char tolLca_ = 0; \
assert(((Hsm *)me_)—>next == 0);\
if (toLca_ = 0) \
toLca_ = HsmToLCA ((Hsm *)(me_), (target_));\
HsmExit_((Hsm *)(me_ ), tolca );\
((Hsm *)(me_))->next = (target );\
} else ((void)0)

#define START_EVT ((Event)(-1))
#define ENTRY_EVT ((Event)(-2))
#define EXIT_EVT ((Event)(=3))
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to represent HSMs with a more effi-
cient data structure than an array.
Techniques in this category require
each action to be coded as a sepa-
rate function. They perform rela-
tively poorly if the state machine is
complex

® Object-oriented “State” design pat-
tern based on delegation and poly-
morphism.7? States are represent-
ed as subclasses implementing a
common interface (each method
in this interface corresponds to an
event). A context class delegates all
events for processing to the current
state object. State transitions are
accomplished by changing the cur-
rent state object (typically re-assign-
ing one pointer). This pattern is
elegant and relatively efficient but
is not hierarchical. Accessing con-
text attributes from state methods
is indirect (cannot use an implicit
this pointer) and breaks encapsu-
lation. The addition of new states
requires subclassing and the addi-
tion of new events requires adding
new methods to the common inter-
face

Implementation
Our implementation of the HSM pat-
tern is, to some degree, a combination
of the techniques itemized above. The
structure of the pattern is shown in
Figure 1. This structure is greatly sim-
plified relative to the standard full-fea-
tured UML design.8

States are represented as instances
of the State class, but unlike the
“State” pattern as described by
Gamma et al.7, the State class is not
intended for subclassing but rather for
inclusion as is. Accordingly, our
approach requires state machines to
be constructed by composition rather
than by inheritance. The most impor-
tant attributes of State class are the
event handler (to describe behavior
specific to the state) and a pointer to
superstate (to define nesting of the
state).

Messages are represented as
instances of Msg class or its subclasses.



LISTING 1b

typedef int Event;

struct Msg {
Event evt;

};

class Hsm; /* forward declaration */

typedef Msg const *(Hsm::xEvtHndlr)(Msg const *);

class State {
State *super;
EvtHndlr hndlr;
char const *name;

/* pointer to superstate */
/% state's handler function */

public:

State(char const *name, State *super, EvtHndlr hndlr);
private:

Msg const *onEvent(Hsm *ctx, Msg const *msg) {

return (ctx—=>*hndlr)(msg);

>

friend class Hsm;
};
class Hsm { /* Hierarchical State Machine base class */
char const *name; /* pointer to static name */
State *curr; /* current state */
protected:

State *next; /* next state (non 0 if transition taken) */

State top; /* top—most state object */
public:
Hsm(char const name, EvtHndlr topHndlr); /% Ctor */

void onStart(Q); /* enter and start the top state */

void onEvent(Msg const *msg); /* '"state machine engine" */
protected:
unsigned char toLCA (State *target);
void exit_(unsigned char tolca);
State *STATE_CURR() { return curr; }
void STATE START(State *target) {
assert(next = 0);
next = target;

3
# define STATE_TRAN(target ) if (1) {\
static unsigned char toLca_ = 0;\
assert(next = 0);\

if (toLca_ == 0\
toLca_ = toLCA (target_);\
exit_(toLca );\
next = (target_);\
} else ((void)0)
};

#define START_EVT ((Event)(-1))
#define ENTRY_EVT ((Event)(-2))
#define EXIT_EVT ((Event)(-3))
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All  messages carry event-type
(attribute evtinherited from Msg) and
possibly arbitrary data (added by sub-
classing).

Events are handled uniformly by
evenl handlers, which are member func-
tions of Hsmclass (typedef EvtHndlr).
As shown in Figure 1, a state machine
consists of at least one state—the top-
level state inherited from Hsm.
Concrete state machines are built by
inheriting from Hsm class, adding an
arbitrary number of states (plus other
attributes), and defining event
handlers.

Because event handlers are meth-
ods of Hsm or its subclasses, they have
direct access to attributes via the
implicit this pointer (in C++) or the
explicit me pointer (in C). Within
event handlers, only one level of dis-
patching (based on event-type) is nec-
essary. Typically this is achieved using
a single-level switch statement. Event
handlers communicate with the state
machine engine (see Listing 2)
through a return value of type Msg*.
The semantic is simple: if an event is
processed, the event handler returns 0
(NULL pointer); otherwise it returns
(“throws”) the message for further
processing by higher-level states. To be
compliant with UML statecharts, the
returned message is the same as the
received message, although return of
a different message type can be con-
sidered. As we discuss later, returning
the message provides a mechanism
similar to “throwing” exceptions.

Entry/exit actions and default tran-
sitions are also implemented inside
the event handler in response to the
pre-defined events ENTRY_EVT,
EXIT_EVT, and START_EVT. The state
machine engine generates and dis-
patches these events to appropriate
handlers upon state transitions. An
alternative approach would be to rep-
resent entry/exit and start actions as
separate methods, but this would
require specification and mainte-
nance of three additional (fine granu-
larity) methods and three additional
function pointers in each state.



LISTING 2a

static Msg const startMsg = { START_EVT };
static Msg const entryMsg = { ENTRY_EVT };
static Msg const exitMsg = { EXIT_EVT };
#define MAX_STATE_NESTING 8
/* Hsm ctor */
void HsmCtor(Hsm *me, char const *name, EvtHndlr topHndlr) {
StateCtor(&me—>top, "top", 0, topHndlr);
me—>name = name;

/% enter and start the top state %/
void HsmOnStart(Hsm *me) {
State *entryPath[MAX_STATE_NESTINGI;
register State **trace;
register State *s;
me—>curr = &me—>top;
me—->next = 0;
StateOnEvent(me->curr, me, &entryMsg);
while (StateOnEvent(me->curr, me, &startMsg), me—>next) {
for (s = me->next, trace = entryPath, *trace = 0;
s '= me->curr; s = s—>super)
*(++trace) = s; /* trace path to target */
while (s = xtrace ) /* retrace entry from source */
StateOnEvent(s, me, &entryMsg);
me—>curr = me—>next;
me—->next = 0;

/% state machine "engine" */
void HsmOnEvent(Hsm *me, Msg const *msg) {
State *entryPath[MAX_STATE_NESTINGI;
register State **trace;
register State *s;
for (s = me=>curr; s; s = s—>super) {
if ((msg = StateOnEvent(s, me, msg)) == 0) {;
if (me—>next) {
for (s = me->next, trace = entryPath, *trace = 0;

/% state transition taken? */

s '= me->curr; s = s—>super)
*(++trace) = s; /* trace path to target */
while (s = *trace ) /* retrace entry from LCA x/

StateOnEvent(s, me, &entryMsg);
me—->curr = me—>next;
me—->next = 0;
while (StateOnEvent(me—>curr, me, &startMsg),
me—>next) {
for (s = me—->next—->super, trace = entryPath,
*trace = 0; s '= me->curr; s = s—>super)
*(++trace) = s; /* record path to target */
while (s = *trace ) /* retrace the entry x/

StateOnEvent(s, me, &entryMsg);
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The topology of a state machine is
determined upon construction. The
constructor of the concrete HSM is
responsible for initialization of all par-
ticipating State objects by setting the
supersstate pointers and the event han-
dlers. An example of a state machine
and corresponding data structures is
shown in Figure 2. In our approach we
do not distinguish between composite-
states (states containing substates) and
leaf states. All states are potentially
composite.

State transitions are implemented
as macros: STATE_START() and
STATE_TRANQ) (see Listing 2). The first
macro (inline member function in
C++) handles start transitions (transi-
tions originating from a “black dot”
pseudostate). The second macro
STATE_TRANO) implements a regular
state transition and is slightly more
complex.

Due to the UML-specified order of
invocation, all exit actions must pre-
cede any actions associated with the
transition, which must precede any
entry actions associated with the newly
entered state(s). To discover which
exit actions to execute, it is necessary
to first find the least common ancestor
(LCA) of the source and target states.
For example, the LCA of the transi-
tion triggered by event e4 in Figure 2
is s2 and the LCA for the transition
triggered by event elis top.

Finding the LCA can be expensive
(see method HsmToLCA_() in Listing
2). However, for any given transition
the LCA needs to be calculated only
once. Method HsmToLCA_() returns the
number of levels from the current
state to the LCA rather than a pointer
to the LCA state itself. The former is
the same for all instances of a given
HSM, that is, it is characteristic of the
Hsm (sub)class rather than individual
state machine objects. For this reason
it can be stored in a static variable
shared by all instances.

The STATE_TRAN() macro ensures
that all exit actions to the LCA will be
executed. The user must then explicit-
ly invoke any actions associated with



LISTING 2a, cont'd.

me—>curr = me—>next;
0;

me—>next

break;

register State *s;

for (s = me—>curr; toLca > 0;
StateOnEvent(s, me, &exitMsg);

me—>curr = s;

State *s, *t;
unsigned char tolLca = 1;

if (s == t)
return tolca;
return 0;

/* exit current states and all superstates up to LCA */
void HsmExit_(Hsm *me, unsigned char tolLca) {

tolLca, s = s—>super)

/% find # of levels to Least Common Ancestor */
unsigned char HsmToLCA_(Hsm *me, State *target) {

for (s = me—>curr->super; s '= 0; ++toLca, s = s—>super)
for (t = target; t != 0; t = t—>super)

/* event processed */

the transition and return from the
event handler. The framework will
then correctly execute any required
entry actions.

The state machine engine (method
Hsm::onEvent() from Listing 2) is
small, due mostly to the simple data
representation employed. To mini-
mize stack use and maximize perfor-
mance we were careful to replace
potential recursion (natural in hierar-
chical state machines) with iteration.

Perhaps the weakest part of the
implementation lies in execution of
entry actions during state transitions.
Entry actions must be executed in
order from the least deeply nested to
the most deeply nested state.!! This is
opposite to the “natural” navigability
in our data structure (see Figure 2).
This problem is solved by first
recording the entry path from the
LCA to the target, then “playing it

backwards” with execution of entry
actions. By applying a technique sim-
ilar to that described previously for
LCA calculation, it is possible to
record an entry path only once and
avoid repetitive calculation. This
optimization trades memory and
additional complexity for speed
improvement.

Sample application

To illustrate the use of the HSM pat-
tern, consider a simple digital watch
(Figure 3). The watch has two but-
tons—which  generate  external
events—and an internally generated
tick event. The different events are
handled differently depending upon
the mode of operation. The basic

watch operates as follows:

® In timekeeping mode, the user can
toggle between displaying date or
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current time by pressing the
“mode” button

® Pressing the “set” button switches
the watch into setting mode. The
sequence of adjustments in this
mode is: hour, minute, day, month.
Adjustments are made by pressing
the “mode” button, which incre-
ments the chosen quantity by one.

“ ”»

Pressing the “set” button while
adjusting month puts the watch
back into timekeeping mode

® While in setting mode the watch
ignores tick events

® Upon return to timekeeping mode
the watch displays the most recent-
ly selected information, that is, if
date was selected prior to leaving

the watch

resumes displaying the date, other-

timekeeping mode,
wise it displays the current time

A state diagram for the specifica-
tion given above is depicted in Figure
3b and its partial implementation is
shown in Listing 3. We apply the HSM
pattern according to the following
recipe:

1. Declare a new class, inheriting
from Hsmclass (the Watch class)

2. Put into this new class all states
(State class instances) and other
attributes (tsec, tmin, thour, and so
on)

3. Declare an event handler method
(member function) for every state.
Don’t forget to declare event han-
dlers for inherited states, like top,
whose behavior you intend to cus-
tomize

4. Define the state machine topology
(nesting of states) in the new class
(the Watch class) constructor

5. Define events for the state machine
(for example, as enumeration).
You can use event-types starting
from 0, because the pre-defined
events use the upper limit of the
Event type range (see Listing 1)

6. Define event handler methods.
Code entry/exit actions and start-
up transitions as response to pre-

defined events ENTRY_EVT,



wisy

EXIT_EVT, and START_EVT, respec-
tively. Provide code for other events
using STATE_TRAN() macro for state
transitions. Remember to return 0
(NULL pointer) if you handle the
event and the initial message point-
er if you don’t

7. Execute the initial start transition

by invoking Hsm::onStart()

8. Arrange to invoke Hsm::onEvent()
for each incoming event

Real-time framework

The HSM design pattern is particular-
ly suited for implementing behavior
associated with active objects (objects
that are the roots of threads-of-control
in a multitasking system). The concept

of active objects exists in many model-
ing languages under different names:
active objects stereotype in UMLS,
active instance in Schlaer-Mellor!?,
and actor in ROOMS. We use the term
“actor” because it’s most compact.
The typical structure of a frame-
work based on active objects is shown
in Figure 4. The Actor class inherits

a) State diagram and b) corresponding data structure

super

Null

s1

super

s21

super

F super

a) Simple digital watch events and b) corresponding state diagram

TICK_EVT

setting
SET_EVT
inute

MODE_EVT
y

month day

MODE_EVT MODE_EVT
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LISTING 2b

static Msg const startMsg = { START_EVT };
static Msg const entryMsg = { ENTRY_EVT };
static Msg const exitMsg = { EXIT_EVT };
#define MAX_STATE_NESTING 8

/* Hsm ctor */
Hsm: :Hsm(char const *name, EvtHndlr topHndlr)
: top(“top"”, 0, topHndlr) { this—>name = name; }
/% enter and start the top state */
void Hsm::onStart() {
State *entryPath[MAX_STATE_NESTINGI;
register State **trace;
register State *s;
curr = &top;
next = 0;
curr—>onEvent(this, &entryMsg);
while C(curr—>onEvent(this, &startMsg), next) {
for (s = next, trace = entryPath, *trace = 0;
s != curr; s = s—>super)
*(++trace) = s; /* trace path to target */
while (s = *trace )
s—>onEvent(this, &entryMsg);
curr = next;

/* retrace entry from source */

next = 0;

/% state machine "engine" */
void Hsm::onEvent(Msg const *msg) {
State *entryPath[MAX_STATE_NESTINGI;
register State **trace;
register State *s;
for (s = curr; s; s = s—>super) {
if ((msg = s—>onEvent(this, msg)) = 0) {
if (next) {
for (s = next, trace = entryPath, *trace = 0;

/*processed?*/
/% state transition taken? */

s != curr; s = s—>super)
*(++trace) = s; /* trace path to target */
while (s = *trace )

s—>onEvent(this, &entryMsg);

curr = next;

/* retrace entry from LCA x/

next = 0;
while C(curr—>onEvent(this, &startMsg), next) {
for (s = next—>super, trace = entryPath, *trace=0;
s != curr; s = s—>super)
*(++trace) = s; /* record path to target */
while (s = *trace )
s—>onEvent(this, &entryMsg);

curr = next;

/* retrace the entry */

next = 0;
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HSM functionality from Hsmand adds
to it a thread of execution (for exam-
ple, via taskIld attribute and task’s
run() method) and a message queue
(via msg@ attribute). Actors can only
communicate with each other by send-
ing each other messages via message
queues. The messages are processed
by the HSM in run-to-completion steps.
Run-to-completion ensures that actors
don’t have to deal with concurrency
issues internally, thereby eliminating a
whole class of difficult time-domain
problems by design.

SOP vs. OOP

OOP introduces two fundamental
types of inheritance: implementation
(class) inheritance and interface
inheritance.” Implementation inheri-
tance defines an object’s implementa-
tion in terms of another object’s
implementation. In contrast, inter-
face inheritance enforces only object
interface compatibility regardless, of
implementation.

Hierarchical state machines intro-
duce a third type of inheritance that is
equally fundamental. We call this
behavioral inheritance. To understand
why hierarchy introduces inheritance
and how it works, consider an empty
(or transparent) substate nested with-
in an arbitrary superstate. If such a
substate becomes active it behaves in
exactly the same way as its superstate,
that is, it inherits the superstate’s entire
behavior. This is analogous to a sub-
class which does not introduce any
new attributes or methods. An
instance of such a subclass is indistin-
guishable from its superclass because,
again, everything is inherited exactly.

This property of HSMs is funda-
mental because it requires only the
differences from the superstate’s behav-
ior to be defined. One observes that
all OO design principles (for example,
the Liskov Substitution Principle)
hold in HSM designs because one
deals with inheritance in yet another
form. The concept of behavioral
inheritance describes the “is-a” (“is-
in”) relationship between substates



and superstates and should not be
confused with inheritance of entire
state models.?

The analogy between SOP and
OOP goes further. Class instantiation

and finalization is similar to entering
and exiting a state. In both cases spe-
cial methods are invoked: constructors
and destructors for objects, entry and
exit actions for states. Even the order

hsm.cpp—C++ implementation

break;

register State *s;

for (s = curr; toLca > O;
s—>onEvent(this, &exitMsg);

curr = s;

State *s, *t;
unsigned char tolLca = 1;

if (s = t)
return tolLca;
return 0;
>

/% exit current states and all superstates up to LCA */
void Hsm::exit_(unsigned char tolLca) {

toLca, s

/% find # of levels to Least Common Ancestor */
unsigned char Hsm::toLCA (State xtarget) {

for (s = curr—>super; s != 0; ++toLca, s = s—>super)
for (t = target; t !'= 0; t = t—>super)

/% event processed */

s—>super)

Structure of real-time framework based on HSM

for () {

Hsm

}
}

void Actor: :run() {
onStart ();

Msg *msg =—>mesgQ->get();
onEvent(msg);

msgQ
taskid

. Msg *msg = MsgQget(me->msgQ);

void ActorRun(Actor *me) {
HsmOnStart((Hsm *) me);
for ;) {

HsmOnEvent((Hsm *)me, msg);
}
}

ConcreteActorA ConcreteActorB
stateA stateA
stateB stateB

36 AucusT 2000 Embedded Systems Programming

of invocation of these methods is the
same: constructors are invoked start-
ing from most remote ancestor classes
(destructors are invoked in reverse
order), and entry actions are invoked
starting from the topmost superstate
(exit actions are invoked in reverse
order).

A final similarity between OOP
and SOP lies in the way they are most
efficiently implemented. Although
polymorphism can be implemented
in many ways, virtually all C++ com-
pilers implement it in the same way:
by using function pointers grouped
into virtual tables. In view of the
deep analogy between SOP and OOP,
it is therefore not surprising that
arguably the most efficient imple-
mentation of HSMs is also based on
grouped
states. These simple state objects

function pointers into
define both behavior and hierarchy
but are not specific to any particular
instance of a state machine. The
same holds for virtual functions,
of the
whole class rather than specific to

which are characteristics

any particular object instance. For
this reason we observe that state
objects could (and probably should)
be placed in v-tables and be support-
ed as a native language feature.

Improvments to UML?

UML state diagrams do not provide
any graphical representation of state
reactions, which are reactions to
events not causing state transitions. In
practice however, reactions are com-
mon and sometimes the whole state
hierarchy is most naturally designed to
reuse group reactions rather than
group transitions. In these cases a
UML state diagram cannot be proper-
ly understood because it is simply
incomplete.

We propose to include reactions in
state diagrams as directed lines start-
ing and finishing in the same state and
lying entirely within that state. (An
example of this notation is shown in
Figure 3 for reactions to TICK_EVT and
MODE_EVT.) Please note that this nota-



LISTING 3a

#include "hsm.h"

typedef struct Watch Watch;
struct Watch {
Hsm super; /* superclass */
int tsec, tmin, thour, dday, dmonth;
State timekeeping, time, date;
State setting, hour, minute, day, month;
State *tkeepingHist;
};

enum WatchEvents {
MODE_EVT,
SET_EVT,
TICK_EVT
};
/* timekeeping state handler */
Msg const *WatchTimekeepingHndlr(Msg const *msg) {
switch (MsgGetEvt(msg)) {
case START_EVT:
STATE_ENTER(me—>tkeepingHist ? me—>tkeepingHist :
&me—>time);
return 0;
case SET_EVT:
STATE_TRAN(&me—>setting);
printf(*Watch::timekeeping—SET;");
return 0;
case TICK EVT:
WatchTimeTick(me);
return 0
case EXIT_EVT:
me—>tkeepingHist = STATE_CURR(me);

return 0;
>
return msg;
>
/*... other state handlerds ... */

/% Watch constructor */
void WatchCtor(Watch *me) {
HsmCtor((Hsm *)me, "Watch', (EvtHndlr)Watch_top);
StateCtor(&me—>timekeeping, 'timekeeping'",
&((Hsm *)me)—>top, (EvtHndlr)Watch_timekeeping);
StateCtor(&me—>time, "time", &me—>timekeeping,
(EvtHndlr)Watch_time);
StateCtor(&me—>date, '"date", &me—>timekeeping,
(EvtHndlr)Watch_date);
StateCtor(&me—>setting, "setting', &((Hsm *)me)—>top,
(EvtHndlr)Watch_setting);
StateCtor(&me—>hour, "hour", &me—>setting,
(EvtHndlr)Watch_hour);
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tion is different from self-transitions,
which also begin and end in the same
state, but lie entirely outside the state.
Self-transitions are different from
reactions because they cause execu-
tion of entry and exit actions.

UML statecharts distinguish com-
posite-states (states with substates)
from leaf-states (states without sub-
states) in that they only allow leaf-
states to be active. This is an unneces-
sary limitation, which occasionally cre-
ates degenerate (empty) substates. To
extend the analogy with OOP, this is
like saying that a class with subclasses
must necessarily be abstract. Our HSM
implementation does not distinguish
between composite and leaf states; it
allows any state to be active.

In our experience with receiver-
applications we frequently encoun-
tered the following situation: in
response to a given event, we wished
to perform an action (for example,
update a digital filter) and then—
depending on the state of the fil-
ter—potentially take a (conditional)
state transition. We did not want to
treat the filter update as part of the
guard condition because this would
add a side effect to the guard (typi-
cally a bad ideall). The only alterna-
tive is to treat the filter update as an
action.

UML requires that actions associ-
ated with transitions be executed
after all exit-actions from the source
state but before any entry-actions to
the target state.!! At this point how-
ever, it is not yet know if the transi-
tion will be required at all. In gener-
al, this aspect of UML semantics
makes it difficult to mix conditional
execution of reactions and transi-
tions. A UML-compliant solution
would require specification of a pure
reaction (update of the digital filter
in this case) and then conditional
propagation of another event to “self,”
specifically to trigger a pure state
transition.

Because our implementation per-
forms state transitions using the



Simple watch HSM: C implementation

StateCtor(&me—>minute, "minute", &me—>setting,
(EvtHndlr)Watch_minute);
StateCtor(&me—>day, "day", &me—>setting,
(EvtHndlr)Watch_day);
StateCtor(&me—>month, "month', &me—>setting,
(EvtHndlr)Watch_month);
me—>tsec = me—>tmin = me—>thour = 0O;
me—>dday = me—>dmonth = 1;
me—>timekeepingHist = NULL;

void main() { /* test harness */
Watch watch;
WatchCtor(&watch) ;
HsmOnStart((Hsm *)&watch);
for (;;) <
Msg *msg = getEvt();
HsmOnEvent((Hsm *)&watch, msg);

/% block until event arrives */

Simple watch HSM: C++ implementation

#include "hsm.h"

class Watch : public Hsm {
int tsec, tmin, thour, dday, dmonth;
timeTick();
protected:

/% process tick event in the 'time' state */

State timekeeping, time, date;
State setting, hour, minute, day, month;
State *tkeepingHist; /* to record history */
Msg const *topHndlr(Msg const *msg);
Msg const *timekeepingHndlr(Msg const *msg);
Msg const *settingHndlr(Msg const *msg);
Msg const *hourHndlr(Msg const *msg);
/*... other state handler methods */
public:
Watch(); /% ctor for defining state hierarchy */
};

enum WatchEvents {
MODE_EVT,
SET_EVT,
TICK_EVT

};
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STATE_TRAN() macro, which causes
execution of all exit-actions up to least
common ancestor, the order of execu-
tion is left to the designer. The UML-
compliant implementation requires
invoking the STATE_TRAN() macro
before other actions associated with the
transition. With our approach, the
designer may choose a different order
(for example, reaction-guard-transi-
tion), if it would simplify the problem
at hand.

A final (proposed) extension to
UML statecharts is associated with
event handling at different levels of
a hierarchical state machine. UML
statecharts require that the same
event be presented for processing to
all levels of the hierarchy, starting
with the active state. We propose to
allow an event to change as it propa-
gates upward through the state hier-
archy. In our implementation this is
simple to achieve. This feature
would facilitate “throwing” an excep-
tion to a higher scope, which could
in turn either handle or “throw” it
again. Because outer states of an
HSM are typically behavioral gener-
alizations of inner states, this tech-
nique for handling exceptions is nat-
ural and arguably, makes more sense
than the traditional exception han-
dling technique of unwinding the
call stack.

The benefits
The HSM design pattern allows hier-
archical state machines to be direct-
ly and efficiently implemented in C
or C++ without code synthesizing
tools. The event-handler methods
provide a concise textual representa-
tion of the state model and allow
high-level structure and low-level
details to be accessed easily. The sim-
plicity of the event-handlers leads to
“housekeeping” code3>—portions of
software that can be automatically
generated by tools—that is trivial to
write by hand.

The HSM pattern is flexible,
allowing even fundamental changes



LISTING 3b, cont'd.

/* timekeeping state handler */
Msg const *Watch::timekeepingHndlr(Msg const *msg) {
switch (msg—>getEvt()) {
case START_EVT:
STATE_ENTER(tkeepingHist ? tkeepingHist : &time);
return 0;
case SET_EVT:
STATE_TRAN(&setting);
printf(*Watch: :timekeeping—SET;");
return 0;
case TICK EVT:
timeTick();
return 0
case EXIT_EVT:
tkeepingHist = STATE_CURRQ);
return 0;
>

return msg;

/*... other state handlerds ... */
/% Watch ctor */
Watch::Watch()
Hsm("Watch", (EvtHndlr)topHndlr),
timekeeping(''timekeeping", &top,
(EvtHndlr)timekeepingHndlr),
time("time", &timekeeping, (EvtHndlr)timeHndlr),
date("'date", &timekeeping, (EvtHndlr)dateHndlr),

setting("'setting", &top, (EvtHndlr)settingHndlr),
hour("hour", &setting, (EvtHndlr)hourHndlr),
minute("minute", &setting, (EvtHndlrdminuteHndlr),
day(''day", &setting, (EvtHndlr)dayHndlr),
month("month", &setting, (EvtHndlr)monthHndlr)

tsec = tmin = thour = 0;
dday = dmonth = 1;
tkeepingHist = NULL;

/* test harness */
void main() {
Watch watch;
watch.onStart();
for (;;) {
Msg *msg = getEvt(); /* block until event arrives */

watch.onEvent(msg);
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in state machine topology to be
accomplished easily, even late in the
process. Due to their hierarchical
nature, models can be developed in
incremental steps and remain exe-
cutable throughout the develop-
ment cycle. By requiring only spe-
cialization of behavior to be coded
at nested levels of the state machine,
common policy mechanisms (for
example, exception handling) can
be handled naturally. The state
machine engine can easily be instru-
mented (an example is available in
code accompanying this article at
www.embedded.com/code.html) to pro-
duce execution trace, message
sequence charts, or even animated
state diagrams. In practice, however,
we found it most useful to use a stan-
dard debugger to step through
interesting parts of the code.

This implementation of the HSM
pattern is no more complex than an
internal implementation of inheri-
tance or polymorphism in C++ and,
in fact, has many similarities (both
are based on function pointers).
Given the many parallels, it seems
reasonable to suggest that state-ori-
ented programming should be
directly supported by a (state-orient-
ed) programming language in the
same way that OOP is supported by
object-oriented languages. We see
this as beneficial for a couple of rea-
sons. First, the compiler could place
state objects in a virtual table and
perform memory and performance
optimizations at compile time (for
example, computation of LCAs for
state transitions). Second, the com-
piler could check consistency and
well-formedness of the state
machine, thereby eliminating many
errors at compile time. In our view
this is one direction in which C/C++
could evolve to better support future
real-time applications. esp
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