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Fooling neural networks

“panda”
57.7% confidence




Review: Generating preferred inputs

 We can use gradient ascent to generate
weird-looking images to maximize activation
of a given unit

dumbbell cup dalmatian

K. Simonyan, A. Vedaldi, and A. Zisserman, Deep Inside Convolutional Networks:

Visualising Image Classification Models and Saliency Maps, ICLR 2014



https://arxiv.org/pdf/1312.6034.pdf

Generating preferred inputs

* Related finding: it is easy to generate perceptually
meaningless images that will be classified as any
given class with high confidence
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freight car remote control peacock African grey

A. Nguyen, J. Yosinski, J. Clune, Deep Neural Networks are Easily Fooled: High

Confidence Predictions for Unrecognizable Images, CVPR 2015



https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Nguyen_Deep_Neural_Networks_2015_CVPR_paper.pdf

Generating preferred inputs
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A. Nguyen, J. Yosinski, J. Clune, Deep Neural Networks are Easily Fooled: High

Confidence Predictions for Unrecognizable Images, CVPR 2015



https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Nguyen_Deep_Neural_Networks_2015_CVPR_paper.pdf

Biological phenomenon: Supernormal stimuli

Seeing red, literally, male stickleback fish would
ignore real rivals to attack wooden replicas with
brightly painted underbellies...

..even reacting territorially when a
red postal van passed the lab window.

Songbirds would abandon
their pale blue eqgs

dappled with gray...

0
\

~..and sit on black
olka-dotted fluorescent

N\

/ 'ﬁﬁ/ll "\\\: Elue dummies so big they

would constantfy

de Off

Tinbergen called these
supernormal stimuli'

.' A hgaching of animals' instincts

beyond “their evolutionary purpose.

http://www.stuartmcmillen.com/comic/supernormal-stimuli/

https://en.wikipedia.org/wiki/Supernormal stimulus



http://www.stuartmcmillen.com/comic/supernormal-stimuli/
https://en.wikipedia.org/wiki/Supernormal_stimulus

Supernormal stimuli for humans?




Generating preferred inputs

* |tis easy to generate perceptually meaningless
Images that will be classified as any given class
with high confidence

robin cheetah armadillo lesser panda

centipede peacock jackfruit bubble

A. Nguyen, J. Yosinski, J. Clune, Deep Neural Networks are Easily Fooled: High

Confidence Predictions for Unrecognizable Images, CVPR 2015



https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Nguyen_Deep_Neural_Networks_2015_CVPR_paper.pdf

Adversarial examples

« We can “fool” a neural network by imperceptibly
perturbing an input image so it is misclassified

African elephant koala Difference 10x Difference

iPod Difference 10x Difference

Source: Stanford CS231n



http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture13.pdf

Outline

* How to fool neural networks?

* Properties of adversarial examples

* Why are neural networks easy to fool?
 How to defend against being fooled?

* Fooling detectors



Finding the smallest adversarial perturbation

« Start with correctly classified image x

« Find perturbation » minimizing ||r||
such that

* x4+ r is misclassified (or classified as specific
target class)

« All values of x + r are in the valid range

« Constrained non-convex optimization,
can be done using L-BFGS

C. Szegedy, W. Zaremba, |. Sutskever, J. Bruna, D. Erhan, |. Goodfellow, R.
Fergus, Intriguing properties of neural networks, ICLR 2014



https://en.wikipedia.org/wiki/Limited-memory_BFGS
https://arxiv.org/pdf/1312.6199.pdf

Finding the smallest adversarial perturbation

« Sample results:

Input Perturbation “Ostrich” Input Perturbation “Ostrich”
x10 x 10

C. Szegedy, W. Zaremba, |. Sutskever, J. Bruna, D. Erhan, |. Goodfellow, R.
Fergus, Intriguing properties of neural networks, ICLR 2014



https://arxiv.org/pdf/1312.6199.pdf

Gradient ascent

Rather than searching for the smallest
possible perturbation, it is easier to take
small gradient steps in desired direction

Decrease score (increase loss) of correct
class y":

of (x,y*) IL(x,y")
«— l
SeSorx e x 1t

X< X—1n

Increase score (decrease loss) of incorrect
target class y:

x<—x+nafg;’y) or x «< x naLg;y)




Fooling a linear classifier

* Increase score of target class V:

of (x,¥)
' 0x

X < X

 For a linear classifier with f(x,9) = w!x:

X<<X+nw

« To fool a linear classifier, add a small
multiple of the target class weights to the test
example



Fooling a linear classifier

1.0% kit fox

12.5% daisy

http://karpathy.qgithub.io/2015/03/30/breaking-convnets/



http://karpathy.github.io/2015/03/30/breaking-convnets/

Analysis of the linear case

* Response of classifier with weights w to
adversarial example x + r:

wlix+r)=wlix+wlr

« Suppose the pixel values have precision e,
l.e., the classifier is normally expected to
predict the same class for x and x 4+ r as
long as ||7]| < €

* How to choose r to maximize the increase In
activation w’r subject to |||, < €7

r = esgn(w)

|. Goodfellow, J. Schlens, C. Szegedy, Explaining and harnessing adversarial examples,

ICLR 2015


https://arxiv.org/pdf/1412.6572.pdf

Analysis of the linear case

* Response of classifier with weights w to
adversarial example x +r, r = € sgn(w):

wl(x+71) =wlx + e wlsgn(w)

» If wis d-dimensional and avg. element
magnitude is m, how will the activation
increase”?

 Byedm,i.e., linearly as a function of d

* The higher the dimensionality, the easier it is
to make many small changes to the input
that cause a large change in the output

|. Goodfellow, J. Schlens, C. Szegedy, Explaining and harnessing adversarial examples,

ICLR 2015


https://arxiv.org/pdf/1412.6572.pdf

Toy example

wix=-24+1+34+24+2-2+1-4-5+1=-3

1
T, — _
o(w'x) = e 0.047

http://karpathy.qithub.io/2015/03/30/breaking-convnets/



http://karpathy.github.io/2015/03/30/breaking-convnets/

Toy example

X +71r | 15|-15| 35(-25| 25| 15| 15|-35| 45| 1.5

wix=-24+1+34+24+2-2+1-4-5+1=-3

1
T, — _
o(w'x) = e 0.047

wlix+7r)=-34+10%05=2

1
— =0.88

cwl(x+7)) = T

http://karpathy.qithub.io/2015/03/30/breaking-convnets/



http://karpathy.github.io/2015/03/30/breaking-convnets/

Generating adversarial examples

 Fast gradient sigh method: Find the gradient of the
loss w.r.t. correct class y*, take element-wise sign,
update in resulting direction:

o))

x<—x+esgn(

. S s ¥ - P £
FERAORAN S RIS YA

ot 3 0 e SANNET ; z .-‘f,u

—I—_OO;X ER T S e 3 T AT S Lt

% DA /4 5 AT = ¥ R
LA N 2 b4 ) N
b = rad 3 Yy )

! PN, o

g

&r sign(VmJ(O,m, y))

esign(VzJ (0, z,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

|. Goodfellow, J. Schlens, C. Szegedy, Explaining and harnessing adversarial examples,

ICLR 2015


https://arxiv.org/pdf/1412.6572.pdf

Generating adversarial examples

» Fast gradient sigh method:
dL(x,y™) )
dx
* [terative gradient sigh method: take
multiple small steps until misclassified, each
time clip result to be within e-neighborhood
of original image
» Least likely class method: try to misclassify
Image as class y with smallest initial score:
dL(x,y) )
dx

x<—x+esgn(

x<—x—esgn(

A. Kurakin, |. Goodfellow, S. Bengio, Adversarial examples in the real world,
ICLR 2017 workshop



https://arxiv.org/pdf/1607.02533.pdf

Generating adversarial examples

Comparison of
methods for € = 32

“Basic iter.”; L., distance to clean image = 32 “L.1. class”; L. distance to clean image = 28

A. Kurakin, |. Goodfellow, S. Bengio, Adversarial examples in the real world,

ICLR 2017 workshop


https://arxiv.org/pdf/1607.02533.pdf

Generating adversarial examples

1.0 1.0

—— clean images —— clean images
0.8 —e— fast adv. | 0.8 —e— fast adv.
—— basic iter. adv. —— basic iter. adv.
>‘ . >‘ .
® 06 —=— |east likely class adv. ® 06 —=— |east likely class adv.
o 3
O O
© ©
'_" 0.4 u? 04
e IS - " " T ‘ i \\1
0.0 0.0 = - - -
0 16 32 48 64 80 96 112 128 0 16 32 48 64 80 96 112 128
epsilon epsilon

Figure 2: Top-1 and top-5 accuracy of Inception v3 under attack by different adversarial methods
and different € compared to “clean images” — unmodified images from the dataset. The accuracy
was computed on all 50, 000 validation images from the ImageNet dataset. In these experiments €
varies from 2 to 128.

A. Kurakin, |. Goodfellow, S. Bengio, Adversarial examples in the real world,
ICLR 2017 workshop



https://arxiv.org/pdf/1607.02533.pdf

Printed adversarial examples

« “Black box™ attack on a cell phone app:

(a) Image from dataset (b) Clean image (c) Adv. image, € = 4 (d) Adv. image, € = 8

A. Kurakin, |. Goodfellow, S. Bengio, Adversarial examples in the real world,
ICLR 2017 workshop



https://arxiv.org/pdf/1607.02533.pdf

Printed adversarial examples

* Accuracies for printed vs. digital images:

Photos Source images
Adversarial Clean images Adv. 1mages Clean images Adv. 1mages
method top-1 top-5 top-1 | top-5 top-1 top-5 | top-1 [ top-5 |
faste = 16 81.8% | 97.0% | 5.1% | 39.4% || 100.0% | 100.0% | 0.0% | 0.0%
faste = 8 77.1% | 95.8% | 14.6% | 70.8% | 100.0% | 100.0% | 0.0% | 0.0%
faste =4 81.4% | 100.0% | 32.4% | 91.2% || 100.0% | 100.0% | 0.0% | 0.0%
faste = 2 88.9% | 99.0% | 49.5% | 91.9% || 100.0% | 100.0% | 0.0% | 0.0%
iter. basice =16 || 93.3% | 97.8% | 60.0% | 87.8% | 100.0% | 100.0% | 0.0% | 0.0%
iter. basic € = 8 89.2% | 98.0% | 64.7% | 91.2% || 100.0% | 100.0% | 0.0% | 0.0%
iter. basic € = 4 922% | 971% | 77.5% | 94.1% | 100.0% | 100.0% | 0.0% | 0.0%
iter. basic € = 2 93.9% | 97.0% | 80.8% | 97.0% | 100.0% | 100.0% | 0.0% | 1.0%
L1. class € = 16 95.8% | 100.0% | 87.5% | 97.9% | 100.0% | 100.0% | 0.0% | 0.0%
1. classe = 8 96.0% | 100.0% | 88.9% | 97.0% | 100.0% | 100.0% | 0.0% | 0.0%
Ll class e =4 93.9% | 100.0% | 91.9% | 98.0% | 100.0% | 100.0% | 0.0% | 0.0%
1. class € = 2 922% | 99.0% | 93.1% | 98.0% | 100.0% | 100.0% | 0.0% | 0.0%

A. Kurakin, |. Goodfellow, S. Bengio, Adversarial examples in the real world,

ICLR 2017 workshop



https://arxiv.org/pdf/1607.02533.pdf

Universal adversarial perturbations

« (Goal: for a given network,
find an image-independent
perturbation vector that
causes all images to be
misclassified with high
probability

i

T
I e \1

caeni

S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, P. Frossard, Universal adversarial

perturbations, CVPR 2017



http://openaccess.thecvf.com/content_cvpr_2017/papers/Moosavi-Dezfooli_Universal_Adversarial_Perturbations_CVPR_2017_paper.pdf

Universal adversarial perturbations

Approach:

o Startwithr = 0

* Cycle through training examples x; (in
multiple passes)
* |If x; + r is misclassified, skip to x;.

* Find minimum perturbation Ar that takes x; + r +
Ar to another class

 Update r « r + Ar, enforce ||r|| < e

* Terminate when fooling rate on training
examples reaches target value

S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, P. Frossard, Universal adversarial
perturbations, CVPR 2017



http://openaccess.thecvf.com/content_cvpr_2017/papers/Moosavi-Dezfooli_Universal_Adversarial_Perturbations_CVPR_2017_paper.pdf

Universal adversarial perturbations

« Perturbation vectors computed from different
architectures:

(d) VGG-19 (e) GoogLeNet (f) ResNet-152
S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, P. Frossard, Universal adversarial

perturbations, CVPR 2017



http://openaccess.thecvf.com/content_cvpr_2017/papers/Moosavi-Dezfooli_Universal_Adversarial_Perturbations_CVPR_2017_paper.pdf

Universal adversarial perturbations

90

Fooling ratio (%)
n w N o)) (2] ~ @®
o o o o o o o

-l
o

o

500

1000

2000

Number of images in X

4000

Fooling ratio on validation set vs.
training set size for GooglLeNet

Fooling rates on different models after training on 10,000 images

CaffeNet [*] | VGG-F[’] | VGG-16['7] | VGG-19[!7] | GoogLeNet ['“] | ResNet-152 [(]
A X 85.4% 85.9% 90.7% 86.9% 82.9% 89.7%
Val. 85.6 87.0% 90.3% 84.5% 82.0% 88.5%
0 X 93.1% 93.8% 78.5% 77.8% 80.8% 85.4%
| Val. 93.3% 93.7% 78.3% 77.8% 78.9% 84.0%

perturbations, CVPR 2017

S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, P. Frossard, Universal adversarial



http://openaccess.thecvf.com/content_cvpr_2017/papers/Moosavi-Dezfooli_Universal_Adversarial_Perturbations_CVPR_2017_paper.pdf

Universal adversarial perturbations

* Universal perturbations turn out to generalize
well across models!

Fooling rate when computing a perturbation for one model (rows)

and testing it on others (columns)

VGG-F | CaffeNet | GoogleNet | VGG-16 | VGG-19 | ResNet-152
VGG-F 93.7% | 71.8% 48.4% 42.1% 42.1% 47.4 %
CaffeNet 74.0% | 93.3% 47.7% 39.9% 39.9% 48.0%
GoogLeNet | 46.2% | 43.8% 78.9 % 39.2% 39.8% 45.5%
VGG-16 63.4% | 55.8% 56.5% 78.3% 73.1% 63.4%
VGG-19 64.0% | 57.2% 53.6% 13.5% 77.8% 58.0%
ResNet-152 | 46.3% | 46.3% 50.5% 47.0% 45.5% 84.0%

S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, P. Frossard, Universal adversarial
perturbations, CVPR 2017



http://openaccess.thecvf.com/content_cvpr_2017/papers/Moosavi-Dezfooli_Universal_Adversarial_Perturbations_CVPR_2017_paper.pdf

Black-box adversarial examples

« Suppose the adversary can only query a
target network with chosen inputs and
observe the outputs

« Key idea: learn substitute for target network
using synthetic input data, use substitute
network to craft adversarial examples

» Successfully attacked third-party APls from
MetaMind, Amazon, and Google, but only on
low-res digit and street sign images

N. Papernot, P. McDaniel, |. Goodfellow, S. Jha, Z. B. Celik, A. Swami, Practical
Black-Box Attacks against Machine Learning, ACM Asia Conference on Computer

and Communications Security, 2017


https://arxiv.org/pdf/1602.02697.pdf

Properties of adversarial examples

For any input image, it is usually easy to generate
a very similar image that gets misclassified by the
same network

To obtain an adversarial example, one does not
need to do precise gradient ascent

Adversarial images can (sometimes) survive
transformations like being printed and photographed

It is possible to attack many images with the same
perturbation

Adversarial examples that can fool one network

have a high chance of fooling a network with
different parameters and even architecture



Why are deep networks easy to fool?

Networks are “too linear”: it is easy to manipulate
output in a predictable way given the input

The input dimensionality is high, so one can get a
large change in the output by changing individual
inputs by small amounts

Neural networks can fit anything, but nothing
prevents them from behaving erratically between
training samples

Counter-intuitively, a network can both generalize well on

natural images and be susceptible to adversarial examples
Adversarial examples generalize well because
different models learn similar functions when trained
to perform the same task?



Defending against adversarial examples




Defending against adversarial examples

« Adversarial training: networks can be made
somewhat resistant by augmenting or
regularizing training with adversarial examples

|. Goodfellow, J. Schlens, C. Szegedy, Explaining and harnessing adversarial examples,

ICLR 2015

F. Tramer, A. Kurakin, N. Papernot, D. Boneh, P. McDaniel, Ensemble adversarial
training: Attacks and defenses, ICLR 2018



https://arxiv.org/pdf/1412.6572.pdf
https://openreview.net/pdf?id=rkZvSe-RZ

Defending against adversarial examples

* Train a separate model to reject adversarial
examples: SafetyNet

Quantized RBF-SVM
Detector

VGG19 Classifier Y

Fc7

J. Lu, T. Issaranon, D. Forsyth, SafetyNet: Detecting and Rejecting Adversarial

Examples Robustly, CVPR 2017



http://www.jiajunlu.com/docs/safetynet.pdf

Defending against adversarial examples

* Design highly nonlinear architectures robust
to adversarial perturbations

Ben Poole @poolio - 4 Jan 2017 v
New paper from Krotov & Hopfield shows that dense associative memory

models are robust to adversarial inputs: arxiv.org/abs/1701.00939

)5 1l 37 ) 108

®» lan Goodfellow "
- ollow v
; @goodfellow_ian

Replying to @poolio

The DAM here is a shallow model: tanh of
power of relu of weighted linear function. Not
very far from a shallow RBF template
matcher

3:07 PM - 5 Jan 2017

5 Likes Q :OF“

Tl O 5

D. Krotov, J. Hopfield, Dense Associative Memory is Robust to Adversarial Inputs,
arXiv 2017


https://arxiv.org/pdf/1701.00939.pdf

Adversarial examples: Summary




Adversarial examples: Summary

« (Generating adversarial examples
* Finding smallest “fooling” transformation
« Gradient ascent
« Fast gradient sign, iterative variants
 Universal adversarial perturbations

« (Generalizability of adversarial examples
* Why are neural networks easy to fool?

« Defending against adversarial examples
* Adversarial training

 Learning to reject adversarial examples
 Robust architectures

« Image pre-processing



Defending against adversarial examples

* Pre-process input images to disrupt adversarial
perturbations

Original TV Minimization Image Quilting

Original

Adversarial

Difference

C. Guo, M. Rana, M. Cisse, L. van der Maaten, Countering Adversarial Images

Using Input Transformations, ICLR 2018



https://openreview.net/pdf?id=SyJ7ClWCb

Top-1 Accuracy

Defending against adversarial examples

* Pre-process input images to disrupt adversarial
perturbations

ResNet-50 trained and tested on

ResNet-50 tested on transformed images )
transformed images

. 7B e e e ettt .76 cvvevernsemeene st
=== Crop Ensembl
0.70 = TV Minimization 0.70
N Image Quilting
e Bit Depth Reduction -
0.60 \‘\\ JPEG Compression 0.60 | \
No Defense
++++  Clean Accuracy \
0.50 0.50}
0.40} 0.40
- Crop Ensembl

0.30 0.30} = TV Minimization

Image Quilting

Bit Depth Reduction
0.20} . 0.20} JPEG Compression

No Defense

+++ Clean Accuracy
0.10} i 0.10
0.00 . - - - L 0.00 - ‘ L L L
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Strength of FGSM transformation

C. Guo, M. Rana, M. Cisse, L. van der Maaten, Countering Adversarial Images
Using Input Transformations, ICLR 2018



https://openreview.net/pdf?id=SyJ7ClWCb

Adversarial examples for detection

 TL;DR: It is much harder to fool a detector like
Faster R-CNN or YOLO than a classifier;
large perturbations are currently required

Original
Sequence

Sequence

J. Lu, H. Sibai, E. Fabry, Adversarial examples that fool detectors, arXiv 2018



https://arxiv.org/pdf/1712.02494.pdf

Adversarial examples for detection

 TL;DR: It is much harder to fool a detector like
Faster R-CNN or YOLO than a classifier;
large perturbations are currently required

Original w/ Faster R-CNN detections Attacked

J. Lu, H. Sibai, E. Fabry, Adversarial examples that fool detectors, arXiv 2018



https://arxiv.org/pdf/1712.02494.pdf

Adversarial examples for detection

 TL;DR: Itis much harder to fool a detector like
~aster R-CNN or YOLO than a classifier;
arge perturbations are currently required

* Itis even harder to fool a detector with physical objects

"All three patterns reliably fool detectors when mapped into videos. However, physical instances of these patterns
are not equally successful. The first two stop signs, as physical objects, only occasionally fool Faster RCNN; the
third one, which has a much more extreme pattern, is more effective.”

J. Lu, H. Sibai, E. Fabry, Adversarial examples that fool detectors, arXiv 2018



https://arxiv.org/pdf/1712.02494.pdf

Adversarial examples for detection

 TL;DR: It is much harder to fool a detector like
Faster R-CNN or YOLO than a classifier;
large perturbations are currently required

« ltis even harder to fool a detector with physical objects

Original w/ Faster R-CNN detections Digitally attacked

T, X B
g A I PN

J. Lu, H. Sibai, E. Fabry, Adversarial examples that fool detectors, arXiv 2018



https://arxiv.org/pdf/1712.02494.pdf

Adversarial examples for detection

 TL;DR: It is much harder to fool a detector like
Faster R-CNN or YOLO than a classifier;
large perturbations are currently required

« ltis even harder to fool a detector with physical objects

Physical adversarial stop sign

J. Lu, H. Sibai, E. Fabry, Adversarial examples that fool detectors, arXiv 2018


https://arxiv.org/pdf/1712.02494.pdf

Robust adversarial examples

3D printed adversarial object (YouTube video)

" classified as turtle [ classified as rifle
B classified as other

A. Athalye, L. Engstrom, A. llyas, K. Kwok, Synthesizing Robust Adversarial

Examples, arXiv 2018
https://blog.openai.com/robust-adversarial-inputs/



https://blog.openai.com/robust-adversarial-inputs/
https://www.youtube.com/watch?v=YXy6oX1iNoA&feature=youtu.be
https://arxiv.org/pdf/1707.07397.pdf

Adversarial examples and humans

* Adversarial examples that are designed to
transfer across multiple architectures can
also be shown to confuse the human visual
system in rapid presentation settings

G. Elsayed et al., Adversarial Examples that Fool both Computer Vision and Time-
Limited Humans, arXiv 2018



https://arxiv.org/pdf/1802.08195.pdf

