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Obstacle and Terrain Avoidance for
Miniature Aerial Vehicles

Stephen Griffiths, Jeff Saunders, Andrew Curtis, Blake Barber,
Tim McLain, Senior Member, IEEE,and Randy BeardSenior Member, IEEE

I. I NTRODUCTION

Unmanned aerial vehicles (UAVs) are playing increasingly
prominent roles in defense programs and strategy around the
world. Technology advancements have enabled the develop-
ment of large UAVs (e.g., Global Hawk, Predator) and the
creation of smaller, increasingly capable UAVs. The focus of
this article is on smaller fixed-wing miniature aerial vehicles
(MAVs), which range in size from1/4 to 2 m in wingspan.
As recent conflicts have demonstrated, there are numerous
military applications for MAVs including reconnaissance,
surveillance, battle damage assessment, and communications
relays.

Civil and commercial applications are not as well developed,
although potential applications are extremely broad in scope.
Possible applications for MAV technology include environ-
mental monitoring (e.g., pollution, weather, and scientific
applications), forest fire monitoring, homeland security,border
patrol, drug interdiction, aerial surveillance and mapping,
traffic monitoring, precision agriculture, disaster relief, ad-
hoc communications networks, and rural search and rescue.
For many of these applications to develop to maturity, the
reliability of MAVs will need to increase, their capabilities
will need to be extended further, their ease of use will need
to be improved, and their cost will have to come down.
In addition to these technical and economic challenges, the
regulatory challenge of integrating UAVs into the nationaland
international air space needs to be overcome.

Critical to the more widespread use of MAVs is making
them easy to use by non-pilots, such as scientists, forest
fire fighters, law enforcement officers, or military ground
troops. One key capability for facilitating ease of use is the
ability to sense and avoid obstacles, both natural and man
made. Many of the applications cited require MAVs to fly at
low altitudes in close proximity to structures or terrain. For
example, the ability to fly through city canyons and around
high-rise buildings is envisioned for future homeland security
operations. For MAVs to be effective tools, the challenge
of operating in complex environments must be automated,
allowing the operator to concentrate on the task at hand.

Performing obstacle and terrain avoidance from a fixed-
wing MAV platform is challenging for several reasons. The
limited payload and power availability of MAV platforms
places significant restrictions on the size, weight, and power
requirements of potential sensors. Sensors such as scanning
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LADAR and RADAR are typically too large and heavy for
MAVs. Related to limits on sensor payload are those on com-
puting resources. For most MAVs, the primary computational
resource is the excess capacity in the autopilot microcontroller.
Additional computational capacity can be added, but comput-
ers such as PC104-based systems generally exceed the payload
capacity of MAVs: smaller microcontrollers are typically used.

Another challenge posed by fixed-wing MAVs is that they
move fast: ground speeds are often in the range of 10 to 20 m/s
(22 to 44 mph). Contrary to the computational limits imposed,
obstacle avoidance algorithms must execute and act quickly.
Unlike ground robots and unmanned rotorcraft, fixed-wing
MAVs cannot stop or slow down while avoidance algorithms
process sensor information or plan maneuvers. Reactions must
be immediate. Obstacle sensing is further complicated by the
fact that sensor readings are altered by changes in aircraft
attitude, especially the rolling motions that occur duringturns.
Attitude changes affect not only the pointing direction of the
sensor, but also cause motion of fixed objects in the field
of view. Obstacle and terrain detection must account for the
effects of aircraft attitude changes for avoidance maneuvers
to be successful. All of the challenges associated with MAV
obstacle and terrain avoidance are compounded by the reality
that for MAVs, mistakes are costly or even catastrophic, as
crashes can result in damage to or loss of the MAV and failure
to complete the objectives of the flight.

As evidenced by the recent DARPA Grand Challenge,
capable obstacle avoidance and terrain navigation systems
have been developed for ground vehicles. Obstacle avoidance
and path planning have been active areas of research for many
years and the associated robotics literature is immense. While
providing a guiding influence, most of the proposed methods
fail to deal with the sensing and computational challenges
imposed by the limited payload capabilities of MAVs.

As autonomous MAVs and feasible obstacle sensors are
recent technological developments, the body of experimental
research directed specifically toward MAV obstacle and terrain
avoidance is small. Related to terrain avoidance is work
focused on utilizing vision processing techniques to estimate
height above ground. Chahl, et al. demonstrated that mimick-
ing the landing behavior of bees, by maintaining constant optic
flow during a landing maneuver, could be used to successfully
control the descent of a MAV [1]. Development of lightweight
sensors for measurement of optic flow has enabled their use
in MAVs [2], [3], [4]. Barrows, et al. have demonstrated that
these sensors can be used to follow undulations in terrain with
low-flying MAVs [5].
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This article presents MAV obstacle and terrain avoidance
research performed at Brigham Young University (BYU). Our
work builds on the notion of utilizing useful but imperfect map
information to plan nominal paths through city or mountain
terrain. Because maps may be limited in resolution, out of
date, or offset in location, MAVs must also utilize sensory
information to detect and avoid obstacles unknown to the
path planner. In this article, we present research utilizing laser
range finder and optic flow sensors to detect obstacles and
terrain. Avoidance algorithms using this sensor information
are discussed briefly and flight test results from our MAVs
are presented.

II. BYU M INIATURE AERIAL VEHICLE PLATFORMS

Over the past five years, BYU has been involved in the
development of MAV airframes, autopilots, user interfaces,
sensors, and control algorithms. This section describes the
experimental platform developed specifically for the obstacle
avoidance research described in this article.

A. Airframe

Figure 1 shows the airframe used for obstacle avoidance
experiments. The airframe has a 1.5 m wingspan and was
constructed with an EPP foam core covered with Kevlar. This
design was selected for its durability, useable payload, ease of
component installation, and flight characteristics. The airframe
can carry a 0.4 kg payload and can remain in flight for over
45 minutes at a time. The collision avoidance sensors that are
embedded in the airframe include three optic-flow sensors,
one laser ranger, and two electro-optical cameras as shown in
Figure 2. Additional payload includes the Kestrel autopilot,
batteries, a 1000 mW, 900 MHz radio modem, a 12-channel
GPS receiver, and a video transmitter.

Fig. 1. Airframe used for collision avoidance experiments.

B. Kestrel Autopilot

The collision avoidance algorithms described in this paper
were implemented on Procerus Technologies’ Kestrel Autopi-
lot version 2.2 [6]. The autopilot is equipped with a Rabbit
3400 29 MHz processor, three-axis rate gyros, three-axis
accelerometers, absolute and differential pressure sensors, and

Fig. 2. Sensors used for collision avoidance. The round holeon the right and
the large hole on the belly are the optic flow sensors. The square hole in the
center is the laser ranger, and the other two round holes are for electro-optical
cameras.

a variety of interface ports. The autopilot measures3.8×5.1×
1.9 cm and weighs18 grams. The autopilot also serves as
a data acquisition device and is able to log 175 kbytes of
user-selectable telemetry at rates up to 60 Hz. The optic flow
sensors and the laser ranger used in this paper are connected
directly to the autopilot and the collision avoidance algorithms
are executed on-board the Rabbit processor.

C. Optic Flow Sensors

The MAV is equipped with three optic-flow sensors. Two
of the optic-flow sensors are forward looking but swept back
from the nose byα = 60 degrees. The third optic flow sensor
points down to determine the height above ground. The optic-
flow sensors, shown in Figure3, are constructed by attaching
a lens to an Agilent ADNS-2610 optical mouse sensor. The
ADNS-2610 has a small form factor, measuring only 10 mm
by 12.5 mm and runs at 1500 frames per second. It requires a
light intensity of at least 80 mW/m2 at a wavelength of 639 nm
or 100 mW/m2 at a wavelength of 875 nm. The ADNS-2610
measures the flow of features across an 18 by 18 pixel CMOS
imager. It outputs two values,δpx and δpy, representing the
total optic flow across the sensor’s field of view in both the
x and y directions. The flow data in the cameray direction
corresponds to lateral motion of the MAV and is ignored.

Figure4 indicates how distance is computed using the optic
flow sensor. The optical mouse chip outputs an optic flow
displacement(δpx, δpy)T at its internal sample rate (1500 Hz).
Since the collision avoidance loop is executed atTs = 20 Hz,
the total optical displacement is integrated overTs to produce
(∆px,∆py). The distance to the objectD is related to the
measured distanced by the expression

D = d cos φ sin α,

where φ is the roll angle of the MAV. From geometry, the
measured distance to the object is given by

d =
VgpsTs

tan
(

λeff
2

) ,
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 Left 
FOV: 6.5o 
Long. Size: 25 mm 
Lat. Size: 30 mm 
Mass: 15 g 
F-stop: 2.0 
 
Center 
FOV: 2.5o 
Long. Size: 35 mm 
Lat. Size: 30 mm 
Mass: 23 g 
F-stop: 2.0 
 
Right 
FOV: 1.2o 
Long. Size: 50 mm 
Lat. Size: 30 mm 
Mass: 23 g 
F-stop: 2.5 
 

Fig. 3. Optic flow sensors with three different lens configurations: 1.2,
2.5, and 6.5 degree field-of-view. The optic flow sensors are constructed by
attaching a lens to an optical mouse chip.

whereλeff is the effective field-of-view. The effective field of
view is given by

λeff = λcam
∆px

Px

− χ̇Ts,

whereλcam is the field of view of the camera,Px is the size
of the pixel array along the direction of motion, andχ̇ is the
yaw rate with respect to the ground. Using similar reasoning
for left-looking and down-looking optic flow sensors we can
derive the following expression:

Dright =
VgpsTs

tan
(

λcamDrightpx

2Px

− χ̇Ts

2

) cos φ sin α

Dleft =
VgpsTs

tan
(

λcamDleftpx

2Px

+ χ̇Ts

2

) cos φ sin α

Ddown =
VgpsTs

tan
(

λcamDdownpx

2Px

− θ̇Ts

2

) cos θ cos φ.

Fig. 4. The optic flow sensor is used to compute the distance to an obstacle
based on the distance traveled between samples (VgpsTs) and the effective
field of view λ.

D. Laser Ranger

For the experiments discussed in this paper we used the
Opti-Logic RS400 Laser rangefinder. The range finder has a
range of 400 m with an update rate of 3 Hz. It weights 170
grams and consumes 1.8 W of power. Figure2 shows the
laser ranger mounted in the airframe. It is important to note
that the RS400 is not a scanning laser rangefinder. Scanning
laser range finders are currently too heavy and consume too

much power for MAV applications. The RS400 returns a single
distance measurement and must be steered by maneuvering the
airframe.

III. PATH PLANNING AND FOLLOWING

The first step in our approach for navigating through com-
plex environments is to plan a nominal path based on known
information about the environment, which is usually in the
form of a street map or topographic map. The MAV must be
able to accurately follow the nominal path to avoid known
obstacles. This section discusses the methods for planning
and following the nominal path. Subsequent sections will
discuss reactive, sensor-based obstacle avoidance strategies for
obstacles unknown during the planning process.

A. Planning the Nominal Path

When planning paths through complex environments, the
computational requirements for finding an optimal path can
be significant and unrealistic for near-real-time execution [7].
Because of this, recent research has focused on randomized
techniques to quickly find acceptable, though not necessarily
optimal, paths [8], [9]. Path planning for MAVs is also difficult
because of the dynamic constraints of flight. Many common
path planning algorithms are inadequate for fixed-wing MAV
systems because they do not handle turn-radius limitationsand
airspeed constraints effectively.

One randomized method that addresses these limitations is
the Rapidly-exploring Random Tree (RRT) algorithm [7], [10].
RRTs use a dynamic model of the system to build a tree of
traversable paths. The search space is quickly explored by
applying control inputs to states already in the tree. Working
with the precise control inputs ensures that the dynamic
constraints are not violated; however, it also results in an
open-loop solution. This would be adequate if we had a
perfect model of the system and no disturbances, but this
method is not satisfactory for an actual MAV because of model
inaccuracies and disturbances, such as wind.

Similar to Frazzoli, et al. [11], we have extended some of the
concepts of RRTs to plan paths in the output space. Through
this work, we have developed a useful a priori path planner
for the MAVs [12]. Our modified RRT algorithm searches
the output states instead of the inputs and produces a list of
waypoints to track. This is sufficient if we can bound the error
of the controlled MAV from the waypoint path. For a given
waypoint path, we can determine the expected trajectory of the
MAV [13] and ensure that only traversable paths are built into
the search tree. Branches in the tree are checked to ensure that
they pass tests on turn radius and climb rate, and are collision-
free. Figure5 depicts the growth of an RRT path through
a simulated urban environment. A planned path through an
actual canyon is shown in Figure15.

B. Vector Field Path Following

Given a nominal waypoint path, it is essential for the MAV
to have the ability to track the path with precision. MAVs
must track these paths despite dynamic limitations, imprecise
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Fig. 5. This figure shows the growth of an RRT path tree througha simulated
urban environment. The algorithm is terminated once a feasible path to the
destination (red X) is found.

sensors and controls, and wind disturbances, which are often
20 to 60 percent of airspeed [14]. Trajectory tracking, which
requires the MAV to be at a specific location at a specific time,
is difficult in such wind conditions. As an alternative, we have
developed a path following approach where the focus is simply
to be on the path, instead of at a specific point that evolves in
time. Similar research in [15] describes a maneuvering method
focused on converging to the path then matching a desired
speed along the path. Our path following method is based on
the creation of course vector fields that direct the MAV onto
the desired path.

The vector field method produces a field of desired course
commands that drive the MAV toward the current path seg-
ment. At any point in space, the desired course can be easily
calculated. This desired course is used to command heading
and roll control loops to guide the MAV onto the desired path.
The vector field method uses only the current path segment
to find the desired course, avoiding possible singularitiesand
sinks resulting from sums of vectors. Many paths planned for
MAVs can be approximated by combinations of straight-line
segments and circular arcs [16]. Figure6 shows examples of
vector fields for linear and circular paths.

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

0 50 100 150

−20
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20

40

60

80

100

120

140

Fig. 6. Path following in wind is accomplished by creating a vector field of
desired course commands based on the lateral deviation from the path. The
figure on the left shows a possible vector field for a straight-line waypoint
path segment. The figure on the right shows a possible vector field for orbit
following.

To account for wind, we use the course and groundspeed
instead of heading and airspeed to control the MAV. Ground-
track motion is the vector sum of the MAV motion relative
to the surrounding air mass and the motion of the air mass
relative to the ground. Since course direction includes the
effects of wind, control based on course is much more effective
at rejecting wind disturbances. In implementing the vector
field approach, course measurements from GPS are compared
with the desired course from the vector field to determine the
appropriate control inputs to keep the MAV on the path.

For a given path, the vector field is divided into a transition
region and an outer region. This is similar in some respects
to the belt zone technique developed by Loizou, et al. [17]
Outside the transition region, the vector field drives the MAV
toward the transition region along a constant course. Once
inside, the vector field changes linearly from the entry course
direction to the desired course along the path. The effect isto
smoothly drive the MAV to follow the path, with larger effort
as the error from the path increases. In [14] it is shown that
for any initial condition, the MAV will enter the transition
region in finite time, then converge to the desired course
asymptotically.

Flight tests have demonstrated the effectiveness of the
vector field path following method, even in windy conditions.
Figure7 demonstrates path following for straight line segments
with acute angles. Wind speeds were approximately 20 percent
of the airspeed during these tests. The vector field method has
been shown to be effective in tracking paths of lines and orbits
with wind speeds of up to 50 percent of the airspeed of the
MAV.

-400 -300 -200 -100 0 100

-100

0

100

200

300

400

500

Fig. 7. This figure shows telemetry data for four consecutive traversals of a
waypoint path. Wind speeds during the flight were 20% of the MAV airspeed.
Note the repeatability of the trajectories even in significant wind.

C. Reactive Obstacle and Terrain Avoidance

Despite having an effective a priori path planner, we cannot
guarantee that the flight path will be free of obstacles. Our
path planner assumes a perfect model of the terrain, but this
assumption is not realistic. If an urban terrain model is missing
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a newly constructed building or a large antenna or tree, a path
leading to a collision could result. Our canyon models are
based on 10 m USGS data, which is fairly accurate, but which
cannot represent small obstacles like trees and power lines. In
addition, the GPS sensor used on the MAV has a constant
bias that can be as large as 10 m. Path planners can produce a
nominal path prior to flight, but the MAV must also have the
ability to sense and reactively avoid unanticipated obstacles
and terrain in real time.

The following sections present reactive planners for pro-
ducing deviations from a nominal path to enable obstacle and
terrain avoidance. SectionIV presents a method for sensing
and avoiding obstacles directly in the flight path and shows
results for reactive avoidance of a building. SectionV presents
an approach for staying centered between obstacles as might
be required for flying through a corridor. Flight test results
are presented that demonstrate autonomous navigation of a
winding canyon.

IV. REACTIVE OBSTACLE AVOIDANCE

Reactive obstacle avoidance from a MAV platform is chal-
lenging because of the size and weight limitations for sensing
and computation hardware imposed by the platform. The speed
with which avoidance decisions must be made and carried
out also causes difficulties. For obstacle avoidance in urban
environments, we have developed a heuristic algorithm that
utilizes a laser ranger to detect and avoid obstacles. The laser
ranger points directly out the front of the MAV, and returns
range data for objects directly in front of the MAV with a
3 Hz update. For our preliminary flight tests, we considered a
simple scenario: a single unknown obstacle placed directlyin
the flight path.

A. Algorithm

Consider the scenario shown in Figure8 where obstacle
avoidance is required. The MAV has a forward ground velocity
V and a minimum turn radiusR and is assumed to be tracking
the given waypoint path at the time the obstacle is detected
by the laser, which has a look ahead distanceL. Figure8 (a)
shows the instant when the obstacle is detected by the laser
ranger. The basic idea is to construct an internal map of
obstacles detected by the laser and to modify the waypoint
path to maneuver around the obstacles in the internal map. We
will refer to the internal representation of obstacles as “map
obstacles.” When the laser detects the location of an obstacle,
we are unsure about the size and height of the obstacle. We
propose representing map obstacles as cylinders with radius R
equal to the minimum turn radius of the MAV, and height equal
to the current altitude of the MAV. As shown in Figure8 (b),
there are two alternate waypoint paths that maneuver around
the map obstacle. The endpoints of the waypoint paths are
selected so that the new waypoint paths are tangent to the
obstacles in the internal map. As shown in Figure9 (a), the
new waypoints are located a distancedR/

√
d2 − R2 from the

original waypoint path, whered is the turn away distance from
the obstacle. If both waypoint waypoint paths are collision
free, then the algorithm randomly selects between the two

paths as shown in Figure8 (c). Since the map obstacle may be
smaller than the the actual obstacle, the laser may again detect
the obstacle as it maneuvers on the modified path. If that is
the case, a new map obstacle is added to the internal map
as shown in Figure8 (d). This process is repeated until the
MAV maneuvers around the obstacle as shown in Figures8 (e)
and (f).

(b)

(a) Obstacle

Original waypoint path

(c)

Modified waypoint path

(d)

(e)

(f)

(b)

(a) Obstacle

Original waypoint path

Obstacle

Original waypoint path

(c)

Modified waypoint path

(d)

(e)

(f)

Fig. 8. Obstacle avoidance algorithm. (a) The laser detects the obstacle.
(b) A map obstacle of radiusR is inserted into the map, and two candidate
waypoint paths are constructed. (c) A modified waypoint path is randomly
selected. (d) The obstacle is again detected by the laser andanother map
obstacle is constructed. (e-f) The process repeats until the MAV is able to
maneuver around the obstacle.

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

Fig. 9. (a) The waypoint path is constructed so that it is perpendicular to
the map obstacle. The radiusR ensures collision free passage around the
map obstacle. (b) The maximum heading change in waypoint paths is when
the MAV must make a full bank to maneuver around the obstacle. (c)An
approximation of the minimum distance required to avoid a straight wall if the
laser is only sampled when the MAV is on the waypoint path. (d) the geometry
used to calculate the distance between two consecutive laser updates.

If we assume zero wind, then the 2-D navigation for the
MAV is given by

ṅ = V cos χ

ė = V sinχ

χ̇ =
g

V
tan φ,
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whereg is the gravitational constant, andφ is the roll angle
of the MAV. On most MAVs, the roll angle is limited between
−φ̄ ≤ φ ≤ φ̄. We will assume that the roll dynamics of
the MAV are sufficiently fast to assume near instantaneous
transitions between±φ̄. Therefore, the minimum turn radius
is given byR = V 2

g tan φ̄
.

We would like to establish a minimum turn away distance
D so that we are guaranteed to avoid collision with a single
rectangular obstacle. The first step is to determine the bounds
on the forward and lateral motion of the MAV when it
transitions from one waypoint path to the next.
Claim: After the insertion of a map obstacle, the MAV requires
at most a forward distance of2√

3
R and a lateral distance of

√

2
3
R to transition onto the new waypoint path while avoiding

the map obstacle.
Assuming the ability to roll instantaneously between±φ̄,

the motion of the MAV during the transition can be constrained
to lie on circles of radiusR. As shown in [13], the path
length of the transition increases monotonically with the angle
between the old and new waypoint paths. Therefore, the
forward and lateral distances are maximized when the angular
separation is maximized, which occurs when instantaneous
motion of the MAV follows a circle of radiusR that just
touches the map obstacle, as shown in Figure9 (b). The claim
follows directly from standard geometrical arguments. Note
that the maximum angular separation is therefore given by
θ = tan−1 1√

2
≈ 36◦.

Claim: Avoidance of a collision with a flat wall is guaranteed
if the the turn away distanceD satisfies

D >

(

8 + 2
√

6

2
√

3

)

R. (1)

Consider the worst-case scenario, shown in Figure9 (c),
of a MAV that is initially traveling perpendicular to a flat
wall. The MAV detects an obstacle and inserts a waypoint at
maximum angletan−1 1√

2
. After aligning its heading with the

waypoint path, the wall is again detected, a map obstacle is
inserted, and a new waypoint with maximum angletan−1 1√

2
is planned. This scenario will repeat itself at most three times
since 3 tan−1 1√

2
> π

2
. Therefore, the maximum forward

direction is bounded by

√
2R

(

(
√

2
3

)1

+
(
√

2
3

)2

+
(
√

2
3

)3
)

=
(

8+2
√

6

2
√

3

)

R.

We note that the algorithm described above, requires that
the laser detect points on the obstacle that are outside of the
map obstacles as soon as they become visible. Is this feasible
given the update rate of the laser? LetTs be the time between
laser updates.
Claim: The maximum distance between laser updates at a
range ofd ≤ L is given by

f(d) = 2
√

R2 + d2 sin

(

V Ts

2R

)

Assuming the vehicle is turning at its maximum rate, the
change in heading between updates isV Ts

R
. Utilizing the

geometry depicted in Figure9 (d), the calculation off(d) is
straightforward. To ensure overlap of map obstacles between
samples we require thatf(D) < R which implies that

Ts <
2R

V
sin−1

(

R

2
√

R2 + D2

)

.

For our airframes, typical values areV = 13 m/s, R =
25 m, which implies from (1) that D = 93 m and Ts <
0.5 s. The laser ranger sample period of 0.33 s satisfies this
constraint, thus ensuring that map obstacles overlap between
samples.

B. Results

For initial testing of the reactive avoidance algorithm, we
chose to deal with a single obstacle only. It was important
that the obstacle be tall enough to allow the MAV to fly at a
safe altitude. Flying at an altitude of 40 m also prevented the
laser ranger from detecting points on the ground that might
be mistakenly interpreted as obstacles, and allowed for losses
of altitude that can occur during aggressive maneuvers.

For our flight tests, we used the tallest building on the BYU
campus (the Kimball Tower) which is 50 m high and 35 m
square and is shown in Figure11. The surrounding buildings
are only about 20 m in height. The MAV was directed to fly
at 40 m altitude from the south side of the building to the
north along a waypoint path that passed directly through the
building. No information about the location or the dimensions
of the building were provided to the MAV. A GPS telemetry
plot of the results is shown in Figure10.

Fig. 10. Flight results for collision avoidance using a laser ranger. The green
line indicates the planned waypoint path, and the dotted line indicates the GPS
track of the MAV.

As the MAV approached the building, the laser ranger
detected the building and calculated its position. When the
MAV came within 93 m of the building, the reactive planner
generated a path around the building and the MAV began to
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track the path. Notice that as the MAV began to pass the
building, it turned towards the original waypoint path and
detected the building a second time. This caused the MAV
to execute a second avoidance maneuver before rejoining the
original waypoint path. The MAV successfully avoided the
building without human intervention. Figure11 shows images
of the MAV and its camera view as it executed the avoidance
maneuver.

Fig. 11. In-flight image of the Kimball Tower on BYU campus duringthe
collision avoidance maneuver.

V. REMOTE ENVIRONMENT TERRAIN AVOIDANCE

As small MAVs become more reliable and maneuverable,
their missions will involve navigating through complex terrain,
such as mountainous canyons and urban environments. In this
section, we focus on terrain avoidance for flying in corridors
and canyons. The algorithms we have developed enable the
MAV to center itself within a corridor or canyon, or to fly
near walls with a specified offset. The algorithms utilize optic
flow sensors like those shown in Figure3. To validate our
algorithms, canyon navigation flight experiments were carried
out in a mountain canyon.

A. Canyon Navigation Algorithm

The first step in navigating through a canyon or urban
corridor is to select a suitable path through the terrain. This
can be done using the RRT algorithm discussed earlier or the
operator can utilize maps to define waypoints for the MAV to
follow. Preplanned paths will rarely be perfect and some paths
could lead the MAV near or even into uncharted obstacles.
Reasons for this include inaccurate or biased terrain data,GPS
error, and the existence of obstacles that have been added since
the terrain was mapped. Therefore, it is important that the
MAV be able to make adjustments to its path to center itself
between walls and other potential hazards.

In our approach, the MAV follows its preplanned path using
the vector field following method. At each time step along the
path the MAV computes its lateral distance from objects to the
left and right using the optic flow ranging sensors. Using this

information, the MAV computes an offsetδ from its planned
path

δ =
1

2
(Dright − Dleft), (2)

where Dleft and Dright are distances to walls on the left
and right measured by the optic flow sensors. Shifting the
desired path by this offset centers the desired path betweenthe
detected walls as shown in Figure12. As Figure13 illustrates,
shifting the desired path also shifts the vector field accordingly.
To improve the performance of this method the optic ranging
sensors are pointed forward at a 30 degree angle. This reduces
lag caused by filtering the sensor readings and allows the MAV
to detect obstacles ahead of its current position.

+

–

Dleft

Dright

planned path 
offset path

WP 1

WP 2

δ
+

–

Dleft

Dright

planned path 
offset path
planned path 
offset path

WP 1

WP 2

δ

Fig. 12. Using the measurements from the optic flow sensors, theplanned
path (solid blue) is shifted byδ to create a new desired path (dashed green)
that is centered between the canyon walls.

WP 1 WP 2
δ

WP 1 WP 2
δ

Fig. 13. The adjusted path (red) is offset from the preplanned path (blue) by
the calculated offset (δ) at each time step to center the desired path between
the canyon walls, thus shifting the vector field along with it.

B. Flight Test Results

Goshen Canyon in central Utah was chosen as a flight
test site. This canyon was selected for its steep winding
canyon walls that reach over 75 m in height, as well as its
proximity to BYU and low utilization. Flight tests through
Goshen Canyon were conducted using the fixed-wing MAV
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discussed in SectionII . Photographs of the flight tests taken
by observers and the onboard camera are shown in Figure14.
In the first flight through the canyon, the planned path was
selected to follow the road. The MAV navigated the canyon
with only minor adjustments to its path. For the second flight,
the planned path was intentionally biased into the east canyon
wall to verify that the navigation algorithms would correctthe
planned path toward the center of the canyon, enabling the
MAV to avoid the canyon walls.

Fig. 14. This figure shows the MAV as it enters Goshen Canyon. The inset
is an image from the camera on-board the MAV.

Fig. 15. Results from the second flight through Goshen Canyon. Flight test
results show the planned path (green) and the actual path (blue). The planned
path was intentionally biased to the east forcing the MAV to offset from its
planned path to center itself through the canyon.

Figures 15 shows results from the second flight which
demonstrate that the MAV biased its desired path up to 10 m
to the right to avoid the canyon walls. If the MAV had not
biased its path it would have crashed into the east canyon wall.

VI. SUMMARY

Miniature aerial vehicles have demonstrated their potential
in numerous applications. Even so, they are currently limited

to operations in open air space, far away from obstacles
and terrain. To broaden the range of applications for MAVs,
methods to enable operation in environments of increased
complexity must be developed. In this article, we presented
two strategies for obstacle and terrain avoidance that provide
a means for avoiding obstacles in the flight path and for staying
centered in a winding corridor. Flight tests have validatedthe
feasibility of these approaches and demonstrated promise for
further refinement.
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