
A Deep Dive into Nomia

Shea Levy

April 21, 2021

There are only two hard things in Computer Science: cache in-
validation and naming things.

—Phil Karlton

Naming and substitution are ubiquitous1 in computation, and many systems
end up dealing with them explicitly. Compilers take module names and sub-
stitute in appropriate symbol tables. Browsers take URLs and substitute in
appropriate web sites. Package managers take package names and substitute
in appropriate changes to your environment. In other cases, the system has
no explicit handle on names but the user or programmer fills in: We refer to
other pieces of code, or techniques, or other computations, or data sources,
or a million other things by name. In implementation, we fill in a special-case
substitution of that name that preserves the intended meaning2.

These domains are, of course, very different. Browsers don’t know what
a symbol table is, and installing a package is distinct from translating source
code to object code. But there are many conceptual commonalities between
them, commonalities which in principle could allow for shared implemen-
tation and semantics. Unfortunately, most of the time the required func-
tionality is reimplemented from scratch. Like any missed opportunity for
reuse, this duplicates work and bugs, leaves many implementations incom-
plete with respect to functionality or performance, and increases cognitive
overhead for users and developers. In this case we also miss opportunities
for cross-system composition: My package manager may know how to in-
stall libpq, and my compiler may know how to resolve libpq-fe.h to a library
once it’s installed, but there’s no general-purpose way to note that the one
name links to the other. With the commonalities abstracted into a shared

1If you take the Church side of the Church-Turing thesis, name substitution is what
computation is.

2We hope!

1

https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis

component, system implementers can focus on their domain expertise, and
users can benefit from correctness, efficiency, and a coherent, easy to use
experience across all of their systems.

Nomia is a system designed to provide a shared conceptual model and
common implementation for substitution of named resources. This document
describes how.

1 A vision of the future

Imagine you’re a developer, and this is a typical day at work:
You’re about to start working on a service that you haven’t worked on

before. You point your editor to the source file you need to work on, and
after a slight delay for the first-time download, you have it open in front of
you. You start modifying the code and, after a minute or two for the library
dependencies to be downloaded, syntax checking kicks in, and points out a
typo a few lines above. You save your change and jump over to another file
that depends on it.

The file opens immediately, and you start making changes. At first, your
editor, with a warning that it’s not up-to-date, says there’s an undefined
reference at the location where you mentioned a function you added in the
previous file. Then, after a few seconds for the first module to compile,
those errors go away. You finish the work and point your browser to the
local service URL. You get a page saying that the service is being spun up,
with a detailed progress report on what remains to be done. You notice a
database dump is being loaded and you know that will take a while, so you
switch to another project, a compute pipeline.

When you enter the development environment for the compute pipeline,
you notice a huge merge has just happened. You were up to date with master,
so you don’t have any conflicts, but you’re not sure if the merge impacted
the parts of the codebase you care about. A colleague recommends you try
out Meld to review the diff, so you run a command to launch it. Then,
after a minute of downloading, since you’ve never used Meld before, the
window pops open and you confirm the merge was fine. You’re testing out
an algorithm tweak on the last stage that should only impact a small portion
of the parallel work units of the pipeline. Although the CI system hasn’t
noticed the merge yet, when you open the module you notice the modules
it depends on have already been fetched from when the original developer
built the branch.

After you finish implementation, you kick off a dry-run of the pipeline and

2

https://meldmerge.org/

confirm that it will produce the same as that day’s production run except at
the end, for the subset of the data your change impacts. You kick off the job,
and while that’s running, you switch back to your browser and see the service
is loaded. You check your work and, satisfied, open a PR. Automatically,
the QA team is mentioned with a URL to test out. You notice the pipeline
run isn’t quite done, so you turn off your computer and head out to lunch.

Back from lunch, you see that the QA team has reviewed your fix and
it looks good, so you merge your changes to the first project. The pipeline
run is done, so you open up a comparison of the real prod run’s results with
your test run. After confirming the new results seem better, you open a PR
with your proposed changes and head home.

To some readers, this may sound like a utopian dream. To others, a secret
nightmare in which all of the magic and implicit assumptions will inevitably
cause a catastrophic break or, worse, subtle bugs missed until it’s too late.
A lucky few might have some subset of this available in some form in their
domain. No one has it all. . . yet.

The vision outlined here is not impossible. It’s not inherently unreliable,
or brittle, or limited to a few special use cases. With appropriate use of names
and a common system for substitution, we can dramatically reduce manual
work, increase efficiency, and ensure correctness in almost any domain where
computers are used. Nomia can make it real.

2 Conceptual model and mechanisms

Nomia provides various mechanisms implementing a model3 that defines sev-
eral core concepts and their interrelation4. In this section, we’ll revisit the
developer’s dream from the introduction, and progressively build up the
model and the mechanisms, showing how Nomia can bring that dream to
life.

2.1 Resources

In your hypothetical work day, you exploited a number of resources: The
source files you edited, the modules you imported, the web service you tested.
A resource is any system component viewed as an object to be manipulated

3Nomia’s model is based off of structures borrowed from category theory. No category
theory is needed to understand this section, but footnotes will be included for those with
the background or interest.

4Many of the concepts come together to form a particular kind of traced monoidal
2-category, possibly with some notion of a "universe" object.

3

and used. Resources in Nomia can be considered very broadly; in addition
to traditional resources like files, you could, say, treat the result of some
expensive computation as a resource.

In Nomia, resources are manipulated via abstract references called han-
dles. Nomia handles are ultimately based on the basic handles provided by
the OS: When your browser loaded the test page, under the hood there was
an open TCP connection, and when your code checker needed to read in the
dependent module interfaces it required a readable file descriptor. A No-
mia handle typically has a limited lifetime and in many cases can be passed
from process to process or even system to system, in the manner of object
capabilities.

Within Nomia, resource handles expose various affordances: A handle to
the results of a pipeline run might have a "read" affordance giving you access
to the bytes of the output, a handle to the Meld program will have an "exec"
affordance to execute it. An affordance is the form in which an attribute
or capability of a resource that is accessible by the user of that resource is
exposed. Different handles might expose different affordances with different
semantics based on the resource in question.

Until the day when our OS and hardware are integrated with Nomia, we
must eventually translate Nomia-aware handles and references to resources
to something the underlying system knows how to work with, such as file
descriptors or open TCP connections. An anomic handle is one which func-
tions outside of Nomia5. For resources which have a corresponding anomic
handle type, an anomic handle can be acquired from a Nomia handle. These
handles can then be used by Nomia-agnostic components.

Under the hood, handles within Nomia may add extra layers of indirec-
tion or by-need evaluation when manipulating resources, such as when your
editor only gives you partial code checking while modules are being com-
piled. An anomic handle, by contrast, must identify a fully realized resource
with respect to the system that will operate on it. A resource is said to be
ready to hand when it is fully materialized in whatever sense is relevant
for proper efficient operation outside of Nomia’s confines.

During the lifecycle of a resource, many events of interest may occur,
such as the resource becoming ready to hand or its contents being updated.
Nomia handles allow the user to subscribe to notifications of these events
and respond accordingly.

5And thus is "lawless" relative to the guarantees Nomia provides. The caller must
ensure through other means (such as keeping a Nomia handle itself open) that the relevant
preconditions are met.

4

https://en.wikipedia.org/wiki/Object-capability_model
https://en.wikipedia.org/wiki/Object-capability_model

2.2 Resource types

Resources can be classified by their resource types: the algorithm you modi-
fied was a pipeline component, the site the QA team evaluated was a test web
service. A resource type6 is a conceptual identification of many different
resources as being the same kind of thing from a certain perspective. A given
resource may have many types: To your compiler, a module file is seen as a
readable file, whereas to your editor the same file is seen as a read/writeable
one.

Each different resource type corresponds to a different Nomia handle
type. The handle acquired to a given resource depends both on the specific
resource and the type of resource the caller is viewing it as.

Resource types identify affordances common to all resources of that type
and their semantics: A read/writeable file can be written to and read from,
and, assuming no intervening modifications, a read from a certain location
will give back the same contents that you last wrote. The semantics of an
affordance is the meaning ascribed to it; the same affordance may have dif-
ferent semantics from different perspectives. A Nomia handle type therefore
defines the set of affordances available and their semantics.

The semantics of an affordance can often be described in terms of resource
state: an immutable readable file has its contents, some (finite) sequence of
bytes, and sequential reads of the file will yield successive portions of those
contents. The resource state refers to the attributes of the resource that
matter to its identity when seen as being of some specific resource type. The
resource state in turn can often be modelled mathematically.

Resource types come with a notion of equivalence relative to that type:
The pipeline dry-run determined that most of the results of the test run
would be the same compute results as those of the prod run that day. Two
resources are equivalent as instances of some resource type when they are
the same for all intents and purposes relevant to the perspective that mo-
tivated defining that resource type. Equivalence can often be identified in
terms of conditions on the resource state.

Resource types sometimes exist in a supertype/subtype relation: Any
immutable readable Unix file can also be seen as a generic Unix filesystem
object. One resource type is said to be a subtype of another (the super-
type) when any resource of the subtype can be seen as also being of the

6The (generators of the) 0-cells of the category. Note that we do not in general identify
a specific resource with some point of the relevant 0-cell, in part because there is no 1:1
mapping between a resource and its type, and in part for reasons detailed in the next
section.

5

supertype. Note that affordance semantics and equivalence are not necessar-
ily preserved across this reinterpretation: On the one hand, Unix filesystem
objects in general have no notion of "contents" (such as a socket) and some
can’t even be read from. On the other, two immutable files with the same
contents (thus the same as immutable files) may have different inode num-
bers and be different as general filesystem objects. Handles of a subtype can
be converted into handles of the supertype and used by components only
aware of the supertype.

Note that resource types can be very domain-specific, and thus Nomia
handle types are an "open universe" extensible by the user. They all depend
on the relationship of the specific attributes of the resource in question and
your specific perspective and purpose in using it. Suppose the compute
pipeline is written in C++ and your CI system uses gcc for performance,
but you prefer clang locally for the better error messages. The object files
produced by the two compilers can be quite different, even viewed as object
files, and so naïvely the object files compiled by CI after the big merge
wouldn’t be equivalent to the object files you’d compile locally. But viewed
as "object files exporting the right symbols following the right platform ABI
based on the relevant headers", they can be considered the same, as long as
that perspective meets the needs of your use case.

2.3 Names

Each of the resources you utilized were first referenced by a name: "Meld"
names a particular program, "the test site for PR #XXX" names a partic-
ular web service. We might be tempted to think of names as identifying a
specific resource, but in general we want to be able to work with names such
as "the Acme webservice," which identifies, say, some specific web service
given some particular executable, a database, and a configuration file. In
this broader sense, a name7 is an identifier for some functional relationship
between a (possibly empty) sequence8 of input resources by type, and a
resulting sequence of output resources by type9. There is a visual notation

7The 1-cells of the category.
8Treating the inputs and outputs as a sequence is convenient for understanding the

theory, but for practical use the inputs and outputs are named and can have variable
multiplicities (e.g. "cat" might be a name with a "single" input that is an arbitrary
length list of readable files).

9The domain and codomain of the 1-cells. Note that this could in principle be extended
to a "dependent category" by allowing the output types to depend on the specific input
resources provided. It could similarly be extended to a "codependent category" by allowing
the inputs to vary depending on how the outputs are used. There is currently no known

6

for representing names generally in diagrams, where names are the boxes
and inputs/outputs are labelled with their types; "the Acme webservice"
described in this paragraph can be visualized as:

Names with an empty list of inputs are therefore called named re-
sources10, since they correspond directly to the resources produced when
the name is run.

Nomia provides a syntactic representation of resource names as plain
data. It also allows for resolving names. If a resolved name has no inputs,
handles to its outputs can be acquired from the resolved name. Resource
events can be subscribed to from a resolved name. Resolved names can
also be passed between components, allowing them to be used without each
component needing to be aware of the whole name’s structure.

The relationships identified by names must be deterministic: input
resources which are equivalent will result in equivalent outputs. This may
seem to make them too strict to be useful. Recall, however, that equivalence
is relative to the resource type, a domain-specific notion; depending on how
high-level the notions of equivalence are, there may be quite a bit of leeway
in exactly how the desired resources are instantiated.

Sometimes, we still want to use names which identify a specific resource
only in the specific context of a user of that name, such as "the standard input
stream" (which is a different input stream for different processes) or "today’s
prod pipeline run" (which is different depending on the day). This isn’t
feasible with determinism alone. For this case, we also allow contextual
names, ones whose outputs depend on some aspect of the caller’s context,

practical use case for those extensions.
10These are the points of the relevant 0-cell. Not every resource has a name that fits the

requirements of names generally, at least not obviously so, so while every named resource
corresponds to some resource the converse isn’t true.

7

which we model by the name taking a special "context" resource type at
the input. "Resources" of this type can be roughly thought of as "the state
of the world from some particular perspective"; they are always ultimately
instantiated with a (unique) "resource" by the caller from outside of the
system by passing the relevant resources in at name resolution time. So "the
standard input stream" takes in an instantiation of "the state of the world
from the perspective of this process" and outputs a readable file stream, and
when you resolve that name you must pass in your process’s file descriptor
table so it can be accessed. Because each top-level instantiation is unique,
contextual names are essentially unrestricted with respect to determinism,
so long as the lack of determinism can be captured in the context.

Much like with handles, we have anomic names that non-Nomia-aware
components can use to reference resources, such as normal file paths to file
system object resources. These anomic names can be acquired from a re-
solved name.

2.4 Substitution

Once we’ve generalized names to refer to relationships between resources, we
may want to substitute the outputs of one name for the inputs of another.
Substitution11 is the creation of a new name that relates the inputs of
some names to the outputs of others by pairing the outputs of the first with
the inputs of the second. We might have a contextual name for "the latest
Acme revision", a name to build the Acme source and produce its docs and
binaries, and a (non-contextual) name for a pristine Acme database, and
compose them all with the "Acme webservice" name to get a name like "the
Acme webservice using the executable compiled from the latest code, the
pristine test db, and some provided config file". In the visual notation, this
would look like:

11This is (unbiased) composition of the 1-cells, including tensoring/composing along
0-cells (i.e. projections).

8

Which as a whole can be seen as new contextual name taking a config
file as an input:

9

Substitutions are exposed via the ability to compose the representations
of names together to produce new names, which can themselves be resolved.
A name that is not the result of composition is called an atomic name.

Names are referentially transparent12 in that we can replace a substi-
tution by "inlining" the result resource rather than referencing it by name,
and get the same output (this follows from determinism).

Resource subtyping can be captured in coercions (or upcasts)—names
that map a single input to a single output and are operationally noops. The
server compilation process coerced the writable file your editor was using to
a readable stream to generate an updated server executable. These coercions
can be omitted from the name representation if they can be inferred.

Because of determinism, using names forces us to say exactly what we
mean. Domain-specificity of resource types and contextuality allow us to say
exactly what we mean, and no stricter, especially if the contextual inputs are
fine-grained. Together, this gives us an expressive specification that lets
us rely on names and know what to expect with the resulting resources,
across domains, modulo implementation bugs. Within one system, we can
effectively identify something as broad as "my browser" and something as
specific as "Firefox of such-and-such version compiled with this compiler and
these configuration flags" and get what we asked for.

Determinism also allows for efficient resource instantiation: If we can
12This is "cut elimination" of the underlying multicategory.

10

cheaply determine that the inputs are all equivalent to some previous in-
stantiation (here or elsewhere), we can safely reuse the previous result.
And, to the extent that contextuality doesn’t tie us to a specific machine, we
can safely distribute the work to other systems. C programmers may be
familiar with ccache, which caches compilation of individual C translation
units, and distcc, which allows for distributed computation of C programs;
with deterministic names we can get the equivalent for any resource we care
to specify! For named resources in particular, since the inputs are always
vacuously equivalent, we can aggressively cache and distribute them.

Many names can themselves be cheaply compared for equality by being
associated with relatively small byte strings, called their spellings — with
the semantics that any two names which are spelled the same are the same
name. This allows for composed names to be subject to caching without
necessarily running intermediate names or even instantiating their results
from a cache. If we know that the top-level inputs are equivalent, and each
name in the chain is equivalent, then we know the outputs will be equivalent.
Spellings typically fall into two categories:

• Canonical spellings are short, descriptive character strings. For ex-
ample, we might have the string $HOME spell out a contextual name
yielding the caller’s home directory.

• Hashed spellings are a cryptographic hash of a serialization of (some
function of) the data needed to actually run the name. If we substi-
tute some file spelled foo into some name that compiles C programs,
we might spell the resulting name sha256("compile-C C11 ${foo}").
Hashed spellings can omit or transform some of the data from the input
to the hash, so long as the name can be considered the same invariantly
under that transformation.

One spelling of a non-contextual name can always be determined via a
hash of its plain data representation, and other spellings can be accessed
from a resolved name.

2.4.1 Technical note: Structural rules

The rules for names given so far technically imply very strict resource man-
agement: Every resource must be used, exactly once, in order. There are
some cases where this is necessary for correctness. Consider the case where
a name depends on three input streams that get instantiated with three
pipes, each filled sequentially by the same process. The first pipe must be

11

https://ccache.dev/
https://distcc.github.io/

completely read from in order for the process to start filling the second one,
so the process instantiating the name must consume it first, and the data
streams can be arbitrarily long so they cannot, in general, be duplicated.
In most cases, however, we can relax this through any combination of the
following three schemes for structural names:

Weakening, which can also be visualized by failing to extend a wire to
the output, lets you ignore some resource: the name doesn’t do anything with
its input. Contracting, which can also be visualized by a fork in a wire, lets
you duplicate some input: the name copies13 the resource it’s instantiated
with and sends one copy over each output. Exchanging, which can also be
visualized by crossing wires, lets you reorder inputs: the left input wire is
forwarded on to the right output wire and vice versa.

These structural names can usually be inferred and thus do not need to
be explicitly represented in the name representation.

By default, all inputs and outputs are eligible for all three schemes. On
a case-by-case basis, we can conceptually annotate given inputs or outputs
with substructural restrictions. Marking an output as relevant indicates
that the result must be used and thus can’t be weakened; marking an input
as relevant indicates that the name does in fact use that input (e.g. internally
it doesn’t weaken it anywhere). Marking an output as affine indicates that
the result can’t be copied and thus can’t be contracted; marking an input
as affine indicates that the name does not duplicate that input. Marking an
output as ordered indicates that nothing before it can be used once it’s used
(if ever) and it can’t be used once something after has been used and thus
can’t be exchanged; marking an input as ordered indicates that the name
does not reorder resources around that input14.

In addition to ensuring correctness in rare cases, these annotations can
also be used for optimization. If an input is marked relevant, the caller
(or general substitution mechanism) might eagerly prepare the resource for

13Often by reference!
14In principle, we could restrict exchange in only one direction, resulting in a one-way

"barrier" to reorders.

12

https://en.wikipedia.org/wiki/Substructural_type_system

consumption (e.g. starting a socket-activated service) rather than waiting for
it to be used, since it will be eventually. If an input is marked affine, the caller
might garbage collect the resource once it’s used. If it’s marked ordered, all
resources before the input in question can be discarded/preparations stopped
once the input is used, and the input itself discarded once something after
it is.

2.5 Reductions

We’ve already seen how the properties of names allow for efficient resource
instantiation and combination. Unfortunately, the efficiency ultimately relies
on identifying equivalent inputs, which is not always cheap and is sometimes
impossible. Consider the compute pipeline. A "run of the pipeline" might
depend on the entire pipeline package and then project out the executable
for each stage:

Since you’ve changed one module in the pipeline, the whole package has
changed. If your change only impacts, say, the last stage of the pipeline,
the individual stages might be able to recognize that their executables are
unchanged. But after the first stage, this recognition wouldn’t result in reuse:
the first stage may have output cached results, but other stages may not be
able to cheaply detect that the output is the same and so would have to
rerun.

13

For these cases, we have reductions15, relationships between names in
which the reduced-to name is more refined and can stand in for the reduced
name to yield an equivalent resource. We might, for example, learn that
"build the pipeline" with the modified inputs reduces to a particular set of
3 named executable resources, and then be able to1 infer a reduction of the
whole pipeline run:

On the right hand side of the inferred reduction, we now know statically
that the first input into Stage 3 is the same as it was in the previous build!
So our caching logic can kick in without running the first 2 stages again.

Reduction events can be subscribed to via a resolved name, allowing the
caller to determine if the reduced name is more amenable to its purposes.

Reductions compose with each other, including across substitutions and
projections16; they can be thought of as substitutions at the name level. For
example, if we have:

15The 2-cells. Note that each hom-category is thin for our purposes, i.e., the only
relevant 2-dimensional data is whether a reduction exists in a given direction or not.

16(Unbiased) composition of 2-cells, including vertical, horizontal, and tensoring.

14

Then we get a composite reduction:

Reductions must preserve determinism: if the original name and the re-
duced name are passed equivalent inputs, they must yield equivalent outputs.
Most reductions are domain-specific, letting you specify how your names re-
late to other names. Some trivial reductions come automatically:

• Nested substitutions, where a substituted name is substituted into an-
other name, reduces to a substitution where everything is simultane-
ous17

• If a contraction is followed by weakening, it cancels out to a no-op,
removing both names.

• A sequence of exchanges that leaves you back where you started cancels
out to a no-op.

17Thus our 1-composition is lax, not even weak.

15

Reductions can be determined a priori, just based on the name, or can
be identified while the process implementing the named relationship is being
run: The process implementing a compilation name might first compile the
binary, find the hash of the result, and identify a reduction from the original
name to a content-addressed name for the binary. This would allow a case
like our pipeline example above.

Reductions can effectively change the input requirements; we can drop,
duplicate, or rearrange wires (so long as we respect substructural restric-
tions18). Reductions can also downcast an output type into a more specific
type, if we know that the resulting resources in the specific cases we’ve iso-
lated will actually be the right type. Together, these capabilities allow us to
flexibly and generically build names that reuse other names for their work,
and make that reuse visible to the system as a whole. For example, we could
build a TTL cache combinator that takes some name and produces a new
name that takes all the same inputs plus the current time and cache state.
This either reduces to some cached named resources (ignoring the remaining
inputs) if we’ve run this name recently enough, or reduces to the underlying
name with the remaining inputs if we haven’t (and captures the result for
next time)19. Or, all of our names that deal with files could delegate the
actual file storage to some content-based names and downcast the results
to an appropriate specific kind of file. This allows us to identify two dif-
ferent names that result in a file with the same contents as being the same
operationally.

2.6 Namespaces

Implicit in the whole discussion so far is that we are describing an open
system: you can freely add new resource types, new names, new reductions,
so long as they meet the requirements. Unfortunately, proving or enforcing
those requirements is in general infeasible. Therefore, for safety purposes,
the system as a whole is conceptually partitioned into multiple namespaces,
each of which has control over only the names and reductions within it. If
one namespace does violate the rules, other namespaces (or users) are only
impacted in contexts where they use names from that namespace.

18In particular, we can’t drop a relevant wire unless we already used the resource before
identifying/following the reduction. We can’t retain an affine wire unless we haven’t used
it before identifying/following the reduction, and the evident but verbose rules for ordered
wires apply as well.

19Note that this could be arbitrarily complex; we could, for instance, have some ML-
based "fuzzy matching" on the inputs and an extra model state input, if we have some
learned notion of when results are going to be "close enough" based on the input closeness.

16

Name resolution therefore happens in the scope of some namespaces. A
resolved name includes an implicit handle to the namespace that its atomic
names have been resolved within, so passing resolved names to other pro-
cesses can let them access the relevant resources even if they don’t otherwise
have access to the owning namespace. Thus, namespaces also provide object
capability-style access control to resources.

Namespaces are also the locus of caching, including distributed caching
and reductions, and spelling. Namespaces can keep previous results in a
store or forward results from another namespace (e.g. on another machine).
A namespace can also identify reductions for any of its atomic names at any
point in resolving, acquiring handles, or using handles for the resources.

Given a resolved name, a user (or a namespace implementing some other
name) may have permissions to persist the underlying resource. This per-
sistence can be absolute, lasting until explicitly removed, or it can be condi-
tional on some other resource still existing. This mechanism allows Nomia to
efficiently garbage collect unused resources while letting users and resource
implementations keep the resources they depend on alive.

In order to have caching/reduction for composite names whose substi-
tutions cross namespace boundaries, we need some way to determine which
namespace gets to provide the results or identify the substitutions. When
operating on some name, we reduce the name to a fully flattened normal form
and work backwards from the final outputs, letting the relevant namespace
determine if it knows of a reduction or has a cached result for the whole
input graph up to that point at each step.20 Each namespace is respon-
sible for defining how its atomic names are resolved and how handles are
acquired, receiving from Nomia resolved names corresponding to its inputs
at the appropriate times.

If one namespace is to use the spelling of names connected to its inputs
as part of a caching scheme, that namespace needs some way to get a spelling
for a given name that it can trust even if it comes from a different untrusted
namespace. We can address this by having namespaces as a resource type
and a namespace of namespaces. A namespace need not trust all of its
peers so long as it trusts some root namespace namespace to give a unique
name to its peers that it can include in its caching. This can also be used
for overlaying optimization or instrumentation; we might have a namespace
of namespaces that says "for any name in the namespaces I expose, I’m first

20Technically we could safely allow namespaces to reduce based on what comes after as
well. But until a use case arises, this allows for a much more straightforward and efficient
execution algorithm.

17

going to check this reduction cache I trust to see if it reduces, and only
forward on to the underlying namespace if not", which would, among other
things, allow different users on the same machine to have their own trusted
3rd party caches without requiring mutual trust. This can also be used to
bootstrap the system; much like filenames are usually relative to some am-
bient root or current directory, most names will be relative to some ambient
namespace of namespaces that provides the default set of namespaces for the
user or the system.

Namespace resources are implemented as computational components (in-
process modules of code or separate processes communicating via inter-
process or inter-system communication protocols) that implement all of the
relevant mechanisms for the atomic names they control. A handle to a
namespace resource is thus a connection to the relevant component, and a
namespace of namespaces provides general mechanisms for describing how
those components should run.

2.7 Summary of Nomia mechanisms

2.7.1 Names

• Names can be represented as plain data, whether by direct represen-
tation of atomic names or by composing existing names into substitu-
tions. Compositions can include resolved names.

• Names can be resolved to resolved names. At resolution time, any
contextual inputs must be satisfied. Name resolution happens relative
to some root namespace of namespaces.

• The static spelling of a non-contextual name can be determined from
the name.

Name syntax The plain-text syntax for names is specified in a formal
grammar. Additional domain-specific structured syntaxes, such as a JSON
syntax, are expected to be defined as needed.

Informally, most names are of the form:

namespace-id?param1=value1¶m2="value 2":name-id?param3=value3(
input: namespace-id-2:name-id-2.output

)

Breaking this down in order, we have:

18

https://github.com/scarf-sh/nomia/releases/download/2.0.1/name-grammar.pdf
https://github.com/scarf-sh/nomia/releases/download/2.0.1/name-grammar.pdf

• namespace-id is an identifier to locate the namespace the name is in.
It is either an identifier string (e.g. foo), in which case the location of
the namespace is hard-coded or configured into the root namespace of
namespaces that the name is resolved in, or it is another name with an
output specified in parentheses (e.g. (foo:bar.namespace)), in which
case the namespace is found by resolving the name and acquiring a
handle to the specified output. The namespace-id (and the separating
:) can be omitted, in which case the context in which the name is
resolved must specify a default namespace to find names.

• name-id is an identifier string whose meaning is supplied by the iden-
tified (or default) namespace

• Parameter values are optional, providing more structured data to re-
solve the specific namespace or name.

• The input specification is optional, identifying any substitutions into
the identified name. Each input specification can name the input being
specified or operate positionally, and references a particular output of
some other name.

So this name means: Connect the output output of namespace-id-2:name-id-2
into the input input of namespace-id?param1=value1¶m2="value 2":name-id?param3=value3.

Anywhere outputs are specified, they can instead be omitted, with the
calling context selecting a default output name.

To allow for fully arbitrary order-sensitive directed substitution graphs,
including cycles21, there is a more general form of the name syntax:

compose
namespace-id?param1=value1¶m2="value 2":name-id?param3=value3(

input: $name_1.output
);
name_1 = namespace-id-2:name-id-2

In this form, the name is a sequence of declarations of names with their
inputs specified, possibly bound to variable names. These variable names can
then be referenced anywhere else within that declaration sequence, including

21For example, glibc needs to reference a POSIX shell to implement the system(3)
function, and bash needs to reference a C library1. The ideal way to resolve this is
to have glibc depend on bash built against that same glibc, in a cycle, with infinite
recursion avoided because bash doesn’t need to call system in order to load its needed
symbols from glibc.

19

beforehand or even within the body of the declaration of the variable in
question. This particular example is semantically equivalent to the first, but
in general names in this form need not be representable as trees.

As syntax sugar for the case where every name in the substitution except
one has outputs feeding, directly or indirectly, into the last one, and the last
one has none of its outputs connected anywhere, we have the syntax:

let
name_1 = namespace-id-2:name-id-2

in
namespace-id:name-id(input: $name_1.output)

which is equivalent to:

compose
name_1 = namespace-id-2:name-id-2;
namespace-id:name-id(input: $name_1.output)

Finally, a name can reference a resolved name via a resolved name vari-
able, of the form @foo, anywhere a name would otherwise be used. In this
case, when the new name is resolved, all resolved name variables must be
assigned to a specific resolved name.

2.7.2 Resolved names

• Listeners for events, including name reductions and resource lifecycle
events, can be attached to a resolved name.

• Resolved names can be passed to other processes or systems without
exposing the underlying namespaces in full.

• Nomia handles to output resources can be acquired from a resolved
name with no inputs.

• Anomic names for resources can be acquired from resolved names where
relevant. The resources will be ready-to-hand when the anomic name
is made available.

• Any spellings of a name can be determined from a resolved name.

• Resolved names can be made persistent, either unconditionally or con-
ditional on the liveness of some other resource.

20

2.7.3 Handles

• Handles expose affordances for inspecting and manipulating the pointed-
to resource.

• Handles can be passed from process to process or system to system
where the underlying resource permits it.

• Listeners for resource events can be attached to a handle.

3 Applications

In this section, we’ll survey a non-exhaustive list of possible applications of
Nomia. Keep in mind that a key feature is that names and substitution can
operate across domains, so we should expect synergy between these when
multiple domains are implemented!

3.1 Content-addressed storage

Any time we have some resource type defined by its contents and those
contents are cheap enough to enumerate, we can build a content-addressed
namespace around it. The typical example is immutable files: given any
file, we can build a named resource whose contents match that file’s at one
read-through and whose spelling is a direct hash of the contents. We can
also build contextual resources based on handles to the resource in question,
e.g. we may have a name stdin that takes file descriptor 0 from the context,
starts reading through it and saving the file to the store, and when it’s done
emits a reduction to the named resource corresponding to the file just saved.

There are many many systems implementing content-addressed storage
for files, including git’s object store and the IPFS distributed file system.
These could be reimplemented as Nomia namespaces, or in cases like IPFS,
Nomia may reuse its protocols for effective distribution and storage. These
systems almost always require you to fully load some resource into the storage
before you can fully use it, while with Nomia we can treat as-yet unloaded
files the same as already cached ones.

It is expected that many namespaces will have their names reduce to
some content-addressed named resource when it’s feasible to do so, as this
allows sharing of the underlying storage mechanisms and enables reuse when
two potentially very different processes result in the same outcome.

21

https://git-scm.com/
https://ipfs.io/

3.2 Package management

Fully reproducible efficiently-shared package environments are a core use
case of Nomia. The seed of Nomia’s design comes from Nix, a system that
provides many of the benefits of Nomia specific to the package management
domain:

• Nix has content-addressed storage, extended from regular files to the
subset of directories that is needed to represent full packages.

• Nix does substitution of compile-time and runtime dependencies by
reference, with appropriate reference tracking for resource liveness.

• Nix has a mechanism for serializing package build scripts that captures
package dependencies as well as the commands to run, which Nix then
hashes to get an identifier for the resulting package.

Together with an isolation mechanism to ensure that nothing unlisted is
used, this allows for a package’s identifier to correspond exactly to the steps
required to produce it from a base set of content-addressed files. Nomia can
extend this by having:

• Higher level notions of "package", e.g. a resource type for a "cross-
compiled package" that treats as equivalent two packages that use
otherwise identical inputs but one is cross-compiled and one is native.

• Multiple namespaces allowing different naming rules and instantiation
processes; Nix’s are appropriately strict given the need to capture ar-
bitrary package build scripts and ensure determinism, but are overkill
and inefficient for many use cases.

• A representation for unsubstituted names with inputs that can be
reused in different combinations, allowing for operations like "build
that package but with a different compiler version" to be available at
the store level.

• Fine-grained contextuality, for cases where full purity is not appropri-
ate.

• Reductions22, including the so-called "intensional store" and recursive
Nix.

22Arguably Nix already has reductions in the single case of fixed-output derivations;
they (statically) reduce to the fixed output file with the appropriate hash. This allows,
for example, for nix-prefetch-url to work without running a derivation.

22

https://nixos.org/

• Optimizations by Nomia-aware components, such as early use of partially-
instantiated packages and more efficient runtime dependency identifi-
cation.

• Package environments that are themselves first-class resources, en-
abling higher level operations like "install a package into my user env"
to be directly represented in the system.

• Secret files that exist in appropriately restricted namespaces, when
building system configurations.

3.3 Unison

Unison is an in-development programming language whose core features can
be seen as special cases of Nomia. Unison has immutable content-addressed
expressions, based on hashing of the language’s AST (up to alpha equiva-
lence). This allows for:

• Implicit incremental compilation/evaluation. When Unison needs to
evaluate some expression, it can very cheaply determine if it already
has, or if it has evaluated some subexpression, and only needs to com-
pile and compute what has changed.

• Exact dependency management within the Unison universe. Any def-
initions you depend on from some other project are fully content-
addressed, with no room for naming conflicts. (Of course, if two parts
of your code base use two "versions" of the same type, they won’t
automatically interconvert.)

• Native distributed computation. Code and computation can be straight-
forwardly distributed based on the desired compute graph, since we can
easily determine if some of the code already exists on a given node or
some subset of the computation has already been evaluated. The pu-
rity of the language ensures it’s safe to combine the results from any
node.

• Cheap correct renaming. Human-visible names are simple mappings
to the actual underlying content-addressed name that can be easily
updated, and in fact different users can have different names for the
same expressions without issue.

Nomia can extend this by:

23

https://www.unisonweb.org/

• Combining the language functionalities with package management to
give Unison an FFI (foreign function interface) that has the same easy
transparent dependency management and preserves Unison’s proper-
ties.

• Enabling some form of this functionality for arbitrary languages. With-
out significant work this would have to be restricted to the module level,
but it would still allow the implicit recompilation and code distribution
for any language.

– In any context where we can guarantee evaluation is pure (e.g.
safe Haskell, or some component we trust promises), we can cache
evaluation as well.

• Allowing alternate equivalence classes of expressions. If you update
some function to make it more efficient but can prove (or, if trusted,
assert) that it has the same behavior, the evaluation cache could use
results from either version and older code could be automatically up-
graded.

3.4 Service orchestration

By treating services as resources, Nomia can provide an immutable infrastructure-
style approach toward service orchestration. Inter-service dependencies can
be modelled as substituted inputs to the name representing the final service,
which is implemented at resolution by giving one service an open connection
to another. If we depend on a service that is the same as one already de-
ployed, we don’t need to deploy it again. This shares some properties with
Nelson, an orchestration tool that leverages semantic versioning and explic-
itly configured dependencies to achieve the same outcome in a container-
based environment.

3.5 Compute pipelines

By modelling computation results as resources, individual stages as prim-
itive names, and compute graphs as composed names, we can automati-
cally orchestrate arbitrarily complex compute pipelines with safe caching
and reuse. The same computation definition can be easily transformed to
run locally threaded in-process or across hundreds of machines. We can cap-
ture batch processes or system state in contextual inputs that then reduce to
non-contextual ones once accessed, thus automatically sharing work without
an a priori notion of what has or hasn’t changed.

24

https://getnelson.io/

3.6 Continuous integration

A specification for continuous integration can be a name that composes all
of the relevant projects together. By combining contextuality and reduction
we can capture notions like "the latest version of each dependency" without
doing unnecessary new work. Test results can be seen as their own resource
and potentially named independently of build products, with parallel com-
putation possible if applicable.

4 Engineering standards

As an aspiring foundational component of nearly every system, it is vital that
Nomia be engineered to very high standards. Specific principles include:

• Specification. The system must have clear precise semantics, library
interfaces must be fully documented, formats and protocols spelled
out in detail. It should be possible based on specifications alone to
reimplement any part of the system compatibly, or even the whole.

• Composability. The system must be made up of composable primitives
that serve a single semantic purpose and can be combined in arbitrary
ways so long as the semantics are respected. Wherever possible this
applies even across versions; we do not assume everything running was
compiled against the same master codebase. Users should be able to
build arbitrary domain-specific systems on top of the core that can all
interact. Nomia may include some opinionated "best practice" com-
binations of components, but cannot assume that those components
are always used in that configuration. Nomia provides mechanism, not
policy. Nomia provides code for reuse wherever possible.

• Observability. Nomia’s users and developers need to be able to under-
stand the behavior and state of the running system, without reinstru-
mentation or rebuilding. Nomia components can build up and emit
rich domain-specific structured event information at every step, which
can be sampled and correlated across components to aid in debugging,
understand user behavior, identify optimization opportunities, etc.

• Verification. Leveraging as appropriate peer review, testing, fuzzing,
formal specification and model checking, formal implementation vali-
dation, runtime observation, etc., we want to continually iterate toward
ensuring the system is sensibly specified and properly implemented.

25

• Security. Nomia has security built in from the beginning, with clear
boundaries between systems, a model assuming mutually untrusted
implementations and users, and applying least privilege throughout.
Wherever possible based on the underlying system primitives, Nomia
uses object capability-style access control, and where not possible, it is
emulated if not prohibitive. In addition to eliminating whole classes of
privilege escalation bugs, this makes for a much cleaner programming
model when coordinating between many systems.

• Compatibility. Nomia is designed for future enhancements wherever
possible, and adheres to strict protocol and API versioning to ensure
any backwards incompatibilities that must happen are caught early.

• Portability. The core components should work on most platforms, and
cross-platform interaction should work smoothly.

5 Near-term use cases

The long-term vision has Nomia sinking into the background for the user,
with all relevant tools having functionality to make them natively Nomia-
aware. Your editor, compiler, shell, browser, and application launcher all
just understand Nomia names and combine them appropriately. But that’s
a fairly far-off endpoint. This section lays out three near-term products
we’re building on top of Nomia at Scarf. Beyond the initial prototype phase,
all of these Scarf tools will be built on top of a Scarf-agnostic core Nomia
implementation, so alternative uses for and interfaces to Nomia can be built
as that core progresses.

5.1 The Scarf Environment Manager

The Scarf Environment Manager is a tool for distributing software and man-
aging per-user and per-project development environments. It will include
standard capabilities for adding and removing packages from environments
by name (using the full flexibility of Nomia to name packages and envi-
ronments), declarative environment specifications that can be shared at the
appropriate level of specificity to ensure the same environments on multiple
machines, and, where possible, automatic integration with domain-specific
environment specifications such as cabal files or requirements.txt.

Package specifications will integrate in with Nix and nixpkgs to leverage
the enormous amount of work that has gone into that package set. Eventually

26

https://en.wikipedia.org/wiki/Object-capability_model

we would like to work with the Nix community to have Nix itself built on
top of Nomia, with automatic integration in with anything else Nomia-aware,
including Scarf’s tools.

Package specifications will also likely integrate with the Scarf Gateway,
allowing maintainers to host their own package definitions and binaries on
third party systems while retaining control over the user access point.

5.2 The Scarf build tool

The Scarf build tool will enable developers to build their projects as No-
mia resources, enabling cached builds, distributed builds, and sharing across
teams and build modes where relevant. Where possible, the tool will be a
drop-in replacement for the relevant build tools that already exist, translat-
ing existing CLIs into commands operating on Nomia names, and thereby
leveraging the system transparently. As a starting point, we will likely choose
a single language to support based on user requirements; Haskell and Rust
seem likely candidates.

5.3 The Scarf service manager

The Scarf service manager will be a way to manage services and their in-
terdependencies. While eventually we will likely aim for general deployment
management, as a starting point we will focus on local development deploy-
ments on a single machine, similar to how Docker Compose is often used.
Developers will be able to describe local services for their projects, including
any service→service dependencies like databases and service→package de-
pendencies like "postgres depends on the psql binary". The service manager
will instantiate them, with any needed builds performed automatically.

27

	A vision of the future
	Conceptual model and mechanisms
	Resources
	Resource types
	Names
	Substitution
	Technical note: Structural rules

	Reductions
	Namespaces
	Summary of Nomia mechanisms
	Names
	Resolved names
	Handles

	Applications
	Content-addressed storage
	Package management
	Unison
	Service orchestration
	Compute pipelines
	Continuous integration

	Engineering standards
	Near-term use cases
	The Scarf Environment Manager
	The Scarf build tool
	The Scarf service manager

