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Nearly forty years after the creation of today’s Internet we understand many of its short-
comings. Today’s Internet has changed the world, the world has moved on and the problem
has shifted. The future Internet is information-centric and not host-centric. Enabling an
information-centric internet means the user has the content dissemination capabilities of
tech giants1 at negligible costs to them. By disseminating data2 on terms defined by the user,
they no longer need to rely on third party tech giants, which are security holes. Fractalide
aims to deliver a platform tailored to preserve the individual’s privacy from state actors and
sidestep tech giants by granting users tools that promote free speech, make deplatforming
impossible, preserve privacy and enable mass dissemination of data from the edges of the
network.

1Google, Apple, Facebook, Amazon and Microsoft
2Copying data such as audio, video, webpages, sofware, ebooks, content in general to whomever requests the

data
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1 Introduction

Every action we do online leaves a digital footprint, a trail of data stored by large tech giants.
Data that paints a detailed picture of our lives and at a larger scale gives insights into political,
cultural and economic trends.

Google knows what happens when two phones come into close proximity to each other at a
night club and head off to a motel for the night. Google knows what was on your mind three
years down to the second as you searched for an abortion clinic.

Google and other tech giants GAFAM3 have a significant asymmetric information advantage
over you. Should that information fall into the wrong hands it may be used against you.

Tools such as Tor (Dingledine 2010) attempt to wrestle back anonymity by putting data
through an onion layered mixer server, though sadly monitoring of Tor exit nodes is the
main problem. Hosted VPNs pretend to give you anonymity, which can all too easily be
compromised by paying off the VPN for user data.

The only way to reduce the tech giant asymmetric information disadvantage is for the user
to retain ownership of their data, for this to happen users must first be able to disseminate
their data at scale, independent of tech giants. This starts by removing location data from
packets entirely.

3Google, Apple, Facebook, Amazon and Microsoft
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2 The Problem

The fundamental reason for relying on tech giants is because we are doing a data dissemina-
tion over a host-centric communication system.

Data dissemination is the distribution or transmission of data to end users. The current
Internet is a host-centric communication system, namely TCP/IP. Essentially a TCP/IP con-
nection is a dumb pipe with an address on each end of the pipe. In one end bits are dumped
and out the other end they spill out.

A large-scale content dissemination over a host-centric communication system is an ex-
tremely expensive affair. It requires costly hardware, software and networking engineers to
maintain millions of concurrent open pipes functioning in a stable fashion. Most small com-
panies cannot afford a large-scale content dissemination over a host-centric communication
system and instead prefer to delegate the technical challenges to GAFAM. This is where
security and privacy holes are introduced.

Obtaining data in a host-centric communication system means users must go through a host
indirection, a data gatekeeper. Where there are gatekeepers you get rent-seekers. It is there-
fore expected data dissemination monopolies arise as an emergent phenomenon.

2.1 Privacy implications

Content gatekeepers extract large amounts of data from their users. Organisations like Cam-
bridge Analytica use this data bringing an end to free and fair democratic elections by iden-
tifying and swinging fence sitter votes. Governments cannot resist tapping into this wealth
of information to put the population under surveillance. Gone are the days when a judge’s
order is required to tap a line, now the entire population is put under mass surveillance and
persisted for days in large warehouses for later processing.

Connecting to host addresses to obtain data means we connect to a gate keeper. If the gate
keeper is compromised, say by a change of management, a merger and aquisition, the user
can be denied access to their content. Increasingly we’re seeing the deplatforming of in-
dividuals because they do not hold the same political views of the platform owner. Some
might argue they’re simply choosing not to have these individuals on their platform and if
they want others to hear what they have to say then they should create their own platform
or find another. This is a correct viewpoint although Google has a long history of delisting
competitors.

By moving away from a host-centric networking to an information-centric network (ICN)
where the user is in total control of their data. An ICN provides the user with the same
data dissemination reach as that of tech giants and allows them to secure their data directly
through optional encryption.
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3 History of the Internet

Understanding why we have such a centralised infrastructure motivates a decentralised
information-centric future. The purpose of this section is to give a brief high level introduc-
tion into the phases of the internet and the problems each phase solved. More importantly,
this section conveys each phase as a bootstrapper for the next phase.

3.1 Phase 1: The Telephone System - Putting Down the Wires

Alexander Graham Bell4, along with his company American Telephone and Telegraph Com-
pany (AT&T) in 1885, arguably started the Internet, albeit not the Internet we know today.
Bell invented the twisted-pair cable, allowing for long distance communication, indeed orig-
inal AT&T pairs still exist till today in rural areas of America 5.

As networked computers didn’t exist, hearing someone’s voice was the killer application.
Therefore it made sense the best way to amortize costs of pulling pairs between offices and
households was to charge for telephone calls. Though telephone calls were purely a side
effect of the system. The system on the other hand was doing something entirely different,
it was dynamically reconstructing itself in order to make connections between callers and
callees. It is important to understand the phone number isn’t an end point address instead,
it is a program or set of instructions telling phone operators (figure 1) and later step-by-step
switches6 how to build a physical connection between line cards. The phone number was a
two dimensional coordinate on a switch board and were intrinsic to the network as AT&T
was a monopoly and didn’t need an interface to outside networks.

3.1.1 Problems

The underlying infrastructure of the Internet suffered from a few issues (i) intristic addresses
which promoted monopolies, (ii) reliablity of connection uptimes.

In order to build a connection in a telephony network all resources need to be known ahead
of time. Luckily, this was straightforward for AT&T as it was a monopoly. The nature of
intrinsic addresses even caused smaller telcos created in other countries to turn into large
monopolies over time.

Telephony networks are structurally unreliable because the more the network scales the prob-
ability of failure increases exponentially. As the reliability factor is the product of the failure
probability of every component in the connection. So the only two ways to combat this de-
gree of structural unreliability was to improve the quality of each component such that gold

4https://en.wikipedia.org/wiki/Alexander_Graham_Bell
5https://en.wikipedia.org/wiki/Twisted_pair
6https://techchannel.att.com/play-video.cfm/2011/7/22/AT&T-Archives-The-Step-by-Step-Switch
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Figure 1: Operators

plated connector with fail over systems were used so that components could last a lifetime.
The second way was to ensure hierarchies didn’t go greater than 5 deep. Despite such high
quality components and conventions in place, AT&T couldn’t achieve reliable systems.

The primary problem of this era was laying down wires, which later formed the backbone of
the Internet today.

3.2 Phase 2: The Internet - Endpoints or Packet Switching

After the 70ies and 80ies came around, data over telephony became more common in large
academic and government institutions in the United States and Europe. Connection setup
times took too long to setup. For voice, connection times were sufficient but for data, the
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times was impractical, resulting in potential gigabytes of cumulative lost time. Almost the
entire networking field focused on reducing connection times, to no avail.

Paul Baran and Donald Davies understood (Baran 1962) that telephony might not be the
only model to use for data networks. By this time there was sufficient wires installed in
Phase 1 of the Internet, thus allowing Paul and Donald to tackle the problem in different
direction. Instead of focusing on physical connection path setup they focused on endpoints.
They suggested that the entire network should be physically hooked up. Data should be
broken into small packets, with each packet header containing the destination address. Then
telling the network to route each packet to the destination address.

In this network the combinatorics are turned upside down, in that, as the system grows in
size, the reliablitiy of a successful packet delivery increases exponentially. No longer does
one need expensive high quality gold plated components, instead one could throw cheap
comodity hardware at the network and the system gets more robust as it scales.

Members of Advanced Research Projects Agency Network (ARPANET) decided to build
Paul’s network (figure 2).

Figure 2: ARPANET
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By the time 1793 rolled around packet switching networks had proven themselves. No longer
do we care about the topology of the network, in stark contrast to telephony networks. One
can dump large amounts of data into packet switching networks and the network will route
packets to their destinations. Should a few packets fail then the endpoints reissue requests
for the data to fix it up.

Vint Cerf realised one could concatenate different packet switching networks together if one
kept the same packet headers between different networks. Therefore each network could be
a different type of network be it radio frequency, satellite, wires etc. and packets could find
their way through each network to the destination address. Transmission Control Protocol
/ Internet Protocol (TCP/IP) allowed for the above and was specified in 1974. In 1977 the
internetwork demonstation (figure 3) was turned on and we’ve been running and expanding
this TCP/IP for about 42 years since. Humanity’s largest and most complex technology
system to date.

Figure 3: Inter-network Demonstration 1977

3.2.1 Problems Solved

Packet networks have their addresses explicit in the data and no longer implicit on the par-
ticular configuration of the wires. This allowed packet switching networks to essentially
connect itself whereas telephony networks required humans (or steppers) to rewire path-
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ways.

Network reliability increases exponentially the larger the network of comodity hardware
becomes, versus telephony networks that become more fragile the larger the network of
expensive components gets.

Connection setup time is now no longer a problem as you are already connected to the
network and the network will route your packets instead of you needing to setup a telephony
pathway to every implicit destination.

Topology of the network has no bearing on packet routing. Whereas telephony networks
were hierarchical and strictly constrained to a certain size. Without the size constraint the
network easily fails.

Lastly, the network repairs itself. If a packet doesn’t go through the endpoints will tell each
other about it and fix up the data.

3.2.2 Problems introduced

TCP/IP was created in order to make it easier to connect machines together. TCP/IP was
influenced by its predecessor telephony in that TCP/IP was a conversational protocol that
involved only two hosts. This is rarely the case when we want to achieve data dissemination.
Data dissemination is transmitting data from one location to many locations, it’s the main
type of communication we do today. In other words, TCP/IP is host-centric networking.

So the model doesn’t really fit well for what we want to do. There are other things that don’t
fit, in that, we are mobile and the TCP/IP inherently doesn’t like mobility.

Furthering the mobility point, there are times when we leave network connectivity. This
is purely a side effect of the TCP/IP network. One wants a network that doesn’t have this
binary state of being connected to the Internet or not. If we’re near another person’s phone
we should be automatically be in communication with it.

As TCP/IP requires knowing all end points there needs to be topologically stable end points
that are alive at least for the duration of routing times. It’s heavy weight maintaining such a
large network of globally known addresses.

On the same hand, making a connection with these end points is also expensive, especially
when there is a mapping from DNS entries to the IP address you wish to seek out.

Lastly, there is a wealth of communication mediums such as radio frequency that isn’t
friendly to TCP/IP. Radio frequency is a broadcast medium so and is ubiquitous and cheap.
Our communication protocols should be making heavy use of this medium.

TCP/IP solved an old problem of connectivity extremely well. The world has evolved and
now faces a new set of problems. Problems TCP/IP is ill suited at solving.
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3.3 Phase 3: Data Dissemination - Information Centric Networking

Information-centric Networking (ICN) evolves the current Internet infrastructure to support
uniquely named data as a core principle. Data as a result becomes independent of location,
storage, application and the very means by which data is transported. This allows for in-
network data caching and replication. Security is built into the network as packets are signed
and optionally encrypted.

ICN is the umbrella name for a series of different ICN techonolgies all exploring this
space. In particular the Fractalide project draws inspiration from the Named-data Network-
ing (NDN) project (Jacobson 2009). Though we significantly diverge from NDN such that
we’re entirely incompatible, indeed the implementation is a complete fresh start using the
Rust programming language.
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4 Copernica

Fractalide is the overarching project name that consists of a number of subprojects. Coper-
nica is one such core subproject and is privacy preserving Information-centric networking
protocol designed to operate over UDP and Radio Frequency.

Named after Copernicus, who realised the Earth isn’t the center of the Universe just as the
IP host isn’t the center of networking, instead the Sun or Named Data should be the center
of the networking world.

Copernica is licensed under the Mozilla Public License v2 and is implemented in the Rust
programming language 7.

4.1 Copernica Principles

Copernica retains three principles that enabled the success of the internet today, and adds a
further three principles derived hindsight.

4.1.1 Hourglass Achitecture

A host-centric network might be described by using the hourglass architecture (figure 48).
Data flows up through the hourglass and back down over the network. Currently all data
flows through the narrow waist, that being the IP address. Meaning both sides of the hour-
glass, applications and app protocols on one side and internet protocols need to interface
with the IP address narrow waist. The IP address is universal in this model. Copernica shifts
the narrow waist away from IP Addresses to a Named Chunks, a far more sensible approach
when dealing with content, something so central to our lives.

Retaining the hourglass architecture means that the upper and lower parts of the architecture
can evolve with sensible constraints such as the name of our data. The upper portion of the
hourglass represents constraints of how the data is used, whereas the lower portion of the
hourglass represents constraints of how data is in motion (figure 59).

4.1.2 End-to-end principle

The payoffs for adding features to a simple network reduce over time, especially when end
hosts need to implement that functionality purely to conform. Meaning the penalities are
distributed throughout the network.

7https://github.com/fractalide/copernica
8http://named-data.net/wp-content/uploads/hourglass.png
9https://www.youtube.com/watch?v=5QPTTnRNESg
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Figure 4: Current Internet Architecture (left) vs Copernica Architecture (right)

Figure 5: Copernica Hourglass Constraints
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The end-to-end principle (Clark 1984) enables robust systems that are resiliant to network-
ing failure. Copernica seeks to retain this feature of keeping the network simple.

4.1.3 Separate routing and forwarding plane

Routing and forwarding planes being separated allowing for the forwarding plane to operate
independently of routing, so that routing can incrementally improve over time.

4.1.4 Builtin security from the start

TCP/IP doesn’t have security built into it. As a result security has been ad hoc and patched
on in a reactionary fashion. Copernica builds strong cryptographic security in at the narrow
waist of the hourglass so security is ubiquitous throughout the network.

4.1.5 Flow balance

Flow balance ensures that the total flow into a node equals the total flow out of a node. This
property is critical for a scalable internet. Copernica ensures that flow balance is adhered to
at a hop-by-hop level.

4.1.6 Promote user preferences and competition

A network of components with a standard means of communicating with each other allows
for a competitive environment. As long as the API stays the same higher price, less efficient
components can be swapped out with more efficient cheaper components. By keeping the
standard Copernica packet format ubiquitous throughout the network a common API enables
a competitive environment.

4.2 Bloom Filters

A key design decision is to use Longest prefix matching using Bloom Filters (BF) (Taylor
2003) in the narrow waist instead of hierarchical naming schemes and the associated longest
prefix matching used on the forwarding plane.

BFs in Copernica, serve two purposes; 1) preserving privacy of the data name 2) forwarding
data on the forwarding plane.
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4.2.1 Bloom Filters enabling privacy

Unlike dense representation (ASCII or UTF8 etc.) BFs are a way of condensing information
into a 65535 bitvector at the same time ensuring sparsity. This process has a side effect of
creating a unique, succinct fingerprint of the data’s name.

For example the name

2ceo1q0te4aj3u2llwl4mxuxnjm9skj897hncanvgcnz0gf3x57ap6h7gk4dw8nv :: my´excel´file.xls“

when converted into an BFI has this value:

r290, 642, 1490s

which is an index into a 65535 bitvector.

4.2.2 Forwarding using BFs

BFs have a very convenient function. We are able to take a Bloom Filter Index (BFI) and
perform boolean AND and OR operations to determine if a 65535 bitvector contains this
BFI or not.

This feature means we can now ensure each interface (eth, UDP/IP, Radio Frequency etc)
gets its own BF. As data comes in on interfaces the data’s BFI get recorded accordingly.
Other interface BFs are referenced when determining where to forward the data.

Later on an implementation (incomplete) will likely be used to self-learn and inform for-
warding of future requests.

4.2.3 Creating an BF

When publishing data, the data owner will assign a human readable name to the data, say
"Nameable Data". To obtain the BFI, we take the name and feed it into a SHA3_512 hashing
algorithm.

We then decide how many elements we want in this bfi array, say 4. We then run 4 loops
while incrementing a count variable and appending it to the above hash. The result of each
iteration is then put through a SHA3_512.

Each of the 4 hashes are then converted from hexadecimals into a very large integer. Then
calculated the remainder i.e.

index = converted % BLOOM_FILTER_LENGTH
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Some pseudocode, because it’s easier to understand:

hasher = Sha3_512::new()
base_hash = hasher("your special snowflake name")
for n in 0..BLOOM_FILTER_INDEX_ELEMENT_LENGTH {

derivative_hash = hasher(bash_hash+n)
converted = convert_from_hexadecimal_to_integer(derivative_hash)
index = converted % BLOOM_FILTER_LENGTH
bloom_filter_index_array[n] = index

}
return bloom_filter_index_array

The above results in a Bloom Filter Index similar to:

r15223, 3562, 157, 32425s

Achievement unlocked.

4.2.4 Determining who published data

So we have a unique fingerprint of data in the form of a Bloom Filter Index. How can I prove
who published it?

To keep it simple lets just use the publishing identity which is a Bech32 address derived from
Ed25519 (Edwards-curve Digital Signature Algorithm). The actual data behind this name
will be an encrypted secret key and a cleartext public key. Thus anyone with the id (taken
from the above example):

2ceo1q0te4aj3u2llwl4mxuxnjm9skj897hncanvgcnz0gf3x57ap6h7gk4dw8nv“.

can obtain the public key of a user. To create a universally unique data name and associated
data means to verify the provenance of data we need to repeat the process for the id and then
the union of the id + data name:

rpBFIp”ceo1q0te...8nv”qq
, pBFIp”ceo1q0te...8nv :: my ´ excel ´ file.xls”qqs

This ensures the receiver of information can query the network using the id to obtain the
public key, which is used to verify the signature of the data and optionally decrypt the data.

The above yields our BFI, a unique anonymous identifier of information:

rr290, 642, 1490sr17, 481, 593ss
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4.3 Copernica Architecture

Starting with a description of the packet structure which describes the ”NarrowWaist“ we’ll
branch out describing how interfaces work and the Request + Response forwarding planes.

4.3.1 NarrowWaist Packet structure

Copernica’s Packet structure represents a simple Request/Response model. This is summed
up by using the name NarrowWaist. It is Copernica’s most basic packet type.

"
struct BFI {
id: Vec<u16>,
name: Vec<u16>,
seq: u64,

}

type Data = [u8; 1024];

enum NarrowWaist {
Request { bfi: BFI },
Response { bfi: BFI, data: Data, seq: u64, len: u64 },

}
"

For simplicity sake the signature is omitted (as this layer of security hasn’t been built yet).

A quick description of the above: "BFI" is the Bloom Filter Index, "Data" is a 1024 element
long array of usigned 8 bits, the "seq" is the current sequential number in the total length of
"len", both unsigned 64 bits.

The above clearly demonstrates that a simple BFI goes out into the network as a Request
and a Response containing the same BFI and associated Data comes back. Given the data
is available on the network. Specifically a Request can select an individual NarrowWaist
packet by inserting the desired number into the "seq" field.

A more sophisticated structure that allows for pipes would look like this:

"
enum NarrowWaist {
Request { bfi: BFI, pipe: bool },
Response { bfi: BFI, data: Data, seq: u64, len: u64, pipe: bool },

}
"
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By differentiating between static named data and named pipes we add complexity to the
NarrowWaist, which enables bidirectional streaming of data and voice-over-copernica type
applications. An important task for later.

4.3.2 Bloom Filter Index Privacy implications

Should a state level threat actor intercept a Request NarrowWaist packet they would just see:

rr29023, 43264, 10, 22523s, r17347, 42223, 4894, 9301ss

Similary should a state level threat actor intercept a Response packet they would be presented
with this:

rrr29023, 43264, 10, 22523s, r17347, 42223, 4894, 9301ss

r

EnCt2d5f14f76c5e5c3d6d5c6be14487c
509ad5702bc0d5f14f76c5e5c3d6d5c6b

e14I ` vuDw9yV gG0HbBR7l28RJTV IhIIIB
PIQK1x`OOxOZpCrlQFWClEI{9mNC8{LY x

vOowGY EmPN3IY lwgoZpk{4ub5Y JEbpeY g
8LdkHGUfsLyqedNTSKTFe4` tvRfc3wi5o

roltf32CV kIlQ ““ IwEmS

ss

Unless one knows the original names, the data names and their associated data payloads are
unintelligible. It is through this means that Copernica is able to maintain a privacy preserving
architecture such that the data itself is secured along with provenance. Thus packets can
flow over insecure channels, indeed through the servers of secret services the world over and
nothing much can be done to the integrity of the data nor the cleartext be obtained.

4.3.3 Request & Response BFIs are inserted into interface BFs

A BF is a 65535 bitvector which resembles the below diagram. Each element is initially set
to ”false“ denoted as ”_“. When a Request or Response BFI is inserted into an interface’s
BF it would change the relevant index entries to the value ”true“ denoted as ”T“.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ T _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ T _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ T _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ T _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ T _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ T _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Thus each BF is capable of holding vast amounts of information.

4.3.4 Interfaces

Copernica might have many interfaces, one could imagine interfaces for websockets,
UDP/IP, Radio Frequency, etc. Regardless, each interface needs to have three Bloom Fil-
ter bitvectors associated with it, namely the Pending Request BF, Forwarding Hint BF and
the Forwarded Request BF.

Pending Request BF

The Pending Request Bloom Filter is used to determine the direction of upstream, meaning,
should an inbound Request with BFI X be present in on Pending Request BF of that interface,
the Request is dropped as the router has already processed this packet. If, however, the
Pending Request BF does not contain BFI X, the router inserts the BFI into the Pending
Request BF and then determines where best to forward the Request downstream. An BFI in
a Pending Request BF is a breadcrumb used to hint on the path a matching Response should
return downstream.

Forwarding Hint BF

The Forwarding Hint Bloom Filter is used to determine if a request can be satisfied on this
inbound interface. Should an BFI exist in a Forwarded Request BF the probability this
interface being able to satisfy the request is higher than other interfaces.

Forwarded Request BF

The Forwarded Request Bloom Filter is used to determine if a request has been forwarded on
another interface (other than the originating interface) so that the router does not to forward
the request on the face again, thus violating flow balance.
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4.3.5 Forwarding Plane

Copernica routes and forwards by BFI alone.

Figure 6: Operational flow in the forwarding planes

Upstream

First we describe the Request Forwarding Plane. A user sets up their CopernicaNet node
and peers it with friends CopernicaNet nodes. These connections don’t necessarily need to
be armoured. We shall call each of these connections a "face".

Our user now seeks data by the name of:

“ ă friendid ą:: movie.mp42

The client library of Copernica will take this name and generate a valid BFI and construct
well formed Request NarrowWaist Packet. This packet is then sent to a Copernica Router.

The first thing the router does is examine the Response Store to see if it contains any Re-
sponses where the key is exactly the same as the BFI our user just generated. If there is such
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a Response, it is immediately returned to our user. Though if the Response Store contains
no such data it will then insert the BFI entry into the inbound face Pending Request BF. The
router will then query the BFs of each face.

For each face, the router checks to see if there is such an BFI entry in the Forwarded Request
BF, if there is such an entry, the Request is dropped. As the router has already seen this
Request and handled it. If on the other hand there is no BFI entry in the Forwarded Request
BF then the router will immediately check the outbound face’s Pending Request BF.

If the outbound face’s Pending Request BF contains an BFI entry exactly the same as our
user’s generated BFI then we drop the Request NarrowWaist Packet as this means this BFI
has actually come in on this face, so it’s pointless sending the Request back to the requestee.
Given that the outbound face’s Pending Request BF has no entry then will check to see if
the outbound face’s Forwarding Hint BF has an entry.

If the outbound face’s Forwarding Hint BF contains an entry then we immediately forward
the request on that face. The Forwarding Hint BF tells us this particular face has satisfied
similar requests before, so the probability is high it can satisfy them again. If on the other
hand there is no forwarding hint then we will take this face and add it to a broadcast list.
Should we iterate over every face and none have a satisfactory forwarding hint, then we will
broadcast this Request on every face in the broadcast list.

Bayes algorithm can be used to improve the above routing flooding algorithm.

Downstream

Say the Response exists somewhere out on the CopernicaNet. The Response’s BFI will first
be checked at the nodes inbound face Forwarded Request BF. If no entry exists then we
immediately drop the Response. The BFI not being in the Forwarded Request BF means the
node didn’t froward a Request on the face in the first place.

Should there be a BFI entry in the Forwarded Request BF then we will insert the Response
into the Response Store. Finally we will iterate over every face checking to see if any face
has a corresponding BFI in its Pending Request BF.

Eventually the Response will return allowing our user to use the data in the Response.

4.4 Security

It is critical for the personal safety of a publisher that an attacker cannot easily increase
knowledge about the data and associated real-world identity behind the publisher id when
they intercept a Copernica packet. This is achieved via two techniques; Bloom Filter encod-
ing of the data name and Public Key Cryptography.

Privacy is the ability to keep certain information to yourself, whereas the concept of
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anonymity allows you to release certain information to one person or more people, even
the general public without those people knowing it was you who did certain activities.

Both privacy and anonymity are critical for a free society.
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5 CopernicaFS

CopernicaFS is the code name for a file sharing application built on the Copernica network-
ing protocol. A networking protocol is only as powerful as the applications that use it.
CopernicaFS is Copernica’s first application and serves to dogfood the protocol.

The simplest way to describe CopernicaFS: It’s an open source DropBox replacement. A
system that doesn’t require expensive DropBox Ltd. data centers in order for the software to
share data. It doesn’t have annoying GUIs and works cross platform.

5.1 CopernicaFS Usage

5.1.1 How to publish data from an application usage perspective

How would Sir David Attenborough create a response, in other words, publish does data?

$ mkresponse <path/to/directory> <David's bech32 id> <data name>

"mkresponse" will search out Sir Attenborough’s id on the network. This id is named using
David’s bech32 id. The Response consists of a single NarrowWaist packet of "seq" = 0 and
"len" = 1. The contents of the packet is David’s encrypted secret key and cleartext public key.
This process allows David to publish data on any machine that has access to the Copernica
network via any communication medium available to him (be it Radio Frequency, lasers,
Morse Code or SneakerNet). All David needs is two pieces of information; his passphrase
challenge and Bech32 .

After "mkresponse" obtains the id, if available, "mkresponse" will attempt to decrypt the
secret key. Upon a successful challenge, a sled database will be created locally. "mkre-
sponse" then sets about indexing the contents of the specified directory in the command line
argument "ăpath/to/directoryą" into a manifest file.

A calculation of each file size and how it maps into each NarrowWaist sequence number
("seq") is put into the manifest. The manifest is then broken up into discrete chunks of
data 1024 bytes long and inserted into the Response sled database as NarrowWaist packets.
The data in the directory is broken up into chunks each 1024 bytes in size and also inserted
into the Response sled database as NarrowWaist packets. Everything is signed and relevant
cryptographic + initial indexing information is made available in the "seq" = 0 NarrowWaist
packet.

The consumer is then able to get hold of "seq" = 0 and determine what the signature should
be and how many NarrowWaist packets the manifest file spans. Recovering the manifest
file allows CopernicaFS to print the directory structure in FUSE and gives the directions to
obtain the rest of the file data from the Copernica network. This Response is now considered
published only after David copies the Response Sled Database into the FUSE mount.
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When the FUSE application receives a copy signal it will then open up the source sled
database and proceed to copy each entry into it’s own sled database.David can now circulate
his Bech32 id and name of file to interested parties via out of band techniques such as existing
email and legacy internet.

5.1.2 How to get data from an application usage perspective

A user downloads a binary (or compiles the FOSS) then runs copernicafs with two argu-
ments:

$ copernicafs <remote-peer-ip-address> <directory-to-mount-the-
fuse-on>

Essentially this is like dialing into an ISP, it gives you access to all data available on this
copernica network.

The user then navigates to the FUSE mount "directory-to-mount-the-fuse-on" using the di-
rectory explorer or shell. Inside the FUSE directory, the user creates a directory using the
Bech32 id of the remote user as the directory name. This id is communicated out of band
via email or QR code on a business card.

$ mkdir ceo1q0te4aj3u2llwl4mxuxnjm9skj897hncanvgcnz0gf3x57ap6h7gk4dw8nv

CopernicaFS understands that if you create a directory in the root of the
mount it should be the Bech32 id of a user you are interested in. Coper-
nicaFS will then issue a Request for Response associated with the name of
‘ceo1q0te4aj3u2llwl4mxuxnjm9skj897hncanvgcnz0gf3x57ap6h7‘ (obviously converted to
a bloom filter index). The network then pulls back a digest of the public key of that user
and signature of the ‘ceo1q0te4aj3u2llwl4mxuxnjm9skj897hncanvgcnz0gf3x57ap6h7‘.
CopernicaFS will only populate this directory with Responses that have been signed by this
key. CopernicaFS will keep track of the public key associated with this directory.

The user may then rename the Bech32 id named directory to something more human read-
able, say:

$ mv ceo1q0te4aj3u2llwl4mxuxnjm9skj897hncanvgcnz0gf3x57ap6h7gk4dw8nv david_attenborough

Upon entering the ’david_attenborough’ directory, the user may create a directory called

$ mkdir life_on_earth

The CopernicaFS application will interpret the event of a directory creation in
a ’david_attenborough’ diretory as a search for a Response. CopernicaFS will
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then take David’s Bech32 id and concatenate it with the data name. i.e.
‘ceo1q0te4aj3u2llwl4mxuxnjm9skj897hncanvgcnz0gf3x57ap6h7::life_on_earth‘. This
means to take the id and convert it into a bloom filter index and the name "life_on_earth" and
convert it into a bloom filter index. Then issue a request to the Copernica network using this
set of bloom filter indices. The combination of signed data by david’s public key ensures
uniqueness.

If a Response, signed by david_attenborough’s key, by the name of ‘life_on_earth‘ exists
on the network, it’ll be pulled down, which essentially means relaying all the NarrowWaist
packets of the desired Response from one embedded rust sled rust to another till it arrives at
your node’s sled database.

The node will then check the authenticity and veracity of the Response then stitch the packets
together on demand. The initial manifest file as part of the Response will tell the FUSE
application the structure of the Response including file names and where to find the data in
the Response. CopernicaFS can then recreate the file structure on the FUSE mount. When
the user open a file then CopernicaFS will pull the data from the sled database and serve it
as a normal file on the FUSE mount.

Should the user delete the directory ’life_on_earth’ in the ‘david_attenborough‘ directory
then that Response will no longer be persisted in the sled database and eventually removed
on a least recently used basis.

Obviously the data exposed via the FUSE mount is read only, and the FUSE application
interprets the delete command differently.
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6 Global rollout

The individual must first find utility in the software without connecting to other people. The
software should be a more simple way of moving files to other machines you own. It might
form part of backup scripts or moving a mp3/mp4 collection to another machine.

This individual utility approach spawns off a series of disconnected nodes across the globe.
The next step is to connect the nodes. This is only achieved if users feel a desire to connect
with each other, once again, this is only achievable if it dead simple to connect to other
nodes. That happens when two friends who both use copernicafs, on a day to day basis, and
want to share files with each other. They then connect their two nodes together and move
data. At this point the two friends might decide it’s better to stay connected to each other so
that they may continue sharing data.

Rinse and repeat this process, of micro clusters forming, many times across the globe, and
before you know it, these clusters start merging into much larger groups. Such that a different
set of friends might not know they are connected. It’s at this point when disconnected friends
might prefer testing for an indirect connection before setting up an direct connection between
them.

Once people develop the confidence to first search the data’s name before setting up a peer
connection, and in majority they get the data first time. Well, that’s the moment that partic-
ular cluster of friends-of-friends are fully connected.

This connection process needs to be repeated over and over across the globe, till we achieve
absolute global rollout.
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7 Conclusion

Copernica enables anonymous communication. Unlike Tor, Copernica doesn’t utilize the
onion network to hide users’ traffic. Instead Copernica strips out all location data (IP address
information) totally and routes via SDRIs. Data is (optionally) encrypted directly and not
via armoured pipes. Thus well funded state level threat actors will only be able to intercept
irreversible SDRIs and intelligible encrypted data.

Copernica takes a step further in that divorcing location from data, we’re able to utilize the
network itself to store and forward data. Hence users interested in popular data do not have
to traverse the globe to obtain the data. They just need to go to their next door neighbour
and copy that data over.

This side effect allows users to step out from under big tech data dissemination monopoly
and disseminate data on their own terms. This is the first step in fixing the security holes
trusted third parties introduce.
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